Reasoning with Qualitative Positional Information for Domestic Domains in the Situation Calculus

In this paper, we present a thorough integration of qualitative representations and reasoning for positional information for domestic service robotics domains into our high-level robot control. In domestic settings for service robots like in the RoboCup@Home competitions, complex tasks such as “get the cup from the kitchen and bring it to the living room” or “find me this and that object in the apartment” have to be accomplished. At these competitions the robots may only be instructed by natural language. As humans use qualitative concepts such as “near” or “far”, the robot needs to cope with them, too. For our domestic robot, we use the robot programming and plan language Readylog, our variant of Golog. In previous work we extended the action language Golog, which was developed for the high-level control of agents and robots, with fuzzy set-based qualitative concepts. We now extend our framework to positional fuzzy fluents with an associated positional context called frames. With that and our underlying reasoning mechanism we can transform qualitative positional information from one context to another to account for changes in context such as the point of view or the scale. We demonstrate how qualitative positional fluents based on a fuzzy set semantics can be deployed in domestic domains and showcase how reasoning with these qualitative notions can seamlessly be applied to a fetch-and-carry task in a RoboCup@Home scenario.

[1]  Eliseo Clementini,et al.  Qualitative Representation of Positional Information , 1997, Artif. Intell..

[2]  V. B. Robinson Individual and multipersonal fuzzy spatial relations acquired using human-machine interaction , 2000, Fuzzy Sets Syst..

[3]  John McCarthy,et al.  SOME PHILOSOPHICAL PROBLEMS FROM THE STANDPOINT OF ARTI CIAL INTELLIGENCE , 1987 .

[4]  Alexander Ferrein Golog.lua: Towards a Non-Prolog Implementation of Golog for Embedded Systems , 2010, AAAI Spring Symposium: Embedded Reasoning.

[5]  Thomas Wisspeintner,et al.  RoboCup@Home: Creating and Benchmarking Tomorrows Service Robot Applications , 2007 .

[6]  Christian Freksa,et al.  Using Orientation Information for Qualitative Spatial Reasoning , 1992, Spatio-Temporal Reasoning.

[7]  Gerhard Lakemeyer,et al.  ccGolog -- A Logical Language Dealing with Continuous Change , 2003, Log. J. IGPL.

[8]  Peter Ford Dominey,et al.  Developmental stages of perception and language acquisition in a perceptually grounded robot , 2005, Cognitive Systems Research.

[9]  Klaus Stein,et al.  Coarse Qualitative Descriptions in Robot Navigation , 2000, Spatial Cognition.

[10]  Hector J. Levesque,et al.  Foundations for the Situation Calculus , 1998, Electron. Trans. Artif. Intell..

[11]  Controlling Unreal Tournament 2004 Bots with the Logic-based Action Language GOLOG , 2005, AIIDE.

[12]  Hector J. Levesque,et al.  GOLOG: A Logic Programming Language for Dynamic Domains , 1997, J. Log. Program..

[13]  Michio Sugeno,et al.  A fuzzy-logic-based approach to qualitative modeling , 1993, IEEE Trans. Fuzzy Syst..

[14]  Alexander Ferrein,et al.  On the Way to High-Level Programming for Resource-Limited Embedded Systems with Golog , 2010, SIMPAR.

[15]  Stephen Yurkovich,et al.  Fuzzy Control , 1997 .

[16]  Thomas Wisspeintner,et al.  RoboCup X: A Proposal for a New League Where RoboCup Goes Real World , 2005, RoboCup.

[17]  Drew McDermott,et al.  Planning Routes Through Uncertain Territory , 1983, Artif. Intell..

[18]  Reinhard Moratz,et al.  Exploiting Qualitative Spatial Neighborhoods in the Situation Calculus , 2004, Spatial Cognition.

[19]  H Prade,et al.  An introduction to fuzzy systems. , 1998, Clinica chimica acta; international journal of clinical chemistry.

[20]  Hector J. Levesque,et al.  ConGolog, a concurrent programming language based on the situation calculus , 2000, Artif. Intell..

[21]  J. Wenny Rahayu,et al.  Qualitative Spatial Reasoning with Topological Relations in the Situation Calculus , 2006, FLAIRS Conference.

[22]  Alexander Ferrein,et al.  Logic-based robot control in highly dynamic domains , 2008, Robotics Auton. Syst..

[23]  Isabelle Bloch,et al.  On the Representation of Fuzzy Spatial Relations in Robot Maps , 2003 .

[24]  Isabelle Bloch,et al.  Spatial reasoning under imprecision using fuzzy set theory, formal logics and mathematical morphology , 2006, Int. J. Approx. Reason..

[25]  Eliseo Clementini,et al.  Qualitative Distances , 1995, COSIT.

[26]  Universiẗat Bremen Bibliothekstr,et al.  A Relative Orientation Algebra with Adjustable Granularity , 2005 .

[27]  Andrew U. Frank,et al.  Spatial Information Theory A Theoretical Basis for GIS , 1993, Lecture Notes in Computer Science.

[28]  Lotfi A. Zadeh,et al.  The concept of a linguistic variable and its application to approximate reasoning-III , 1975, Inf. Sci..

[29]  Barbara Tversky,et al.  Spatial Information Theory A Theoretical Basis for GIS , 1993, Lecture Notes in Computer Science.

[30]  Wilfried Brauer,et al.  From Motion Observation to Qualitative Motion Representation , 2000, Spatial Cognition.

[31]  L. A. Zedeh Knowledge representation in fuzzy logic , 1989 .

[32]  Lotfi A. Zadeh,et al.  The Concepts of a Linguistic Variable and its Application to Approximate Reasoning , 1975 .

[33]  Michael A. Arbib,et al.  Schema theory , 1998 .

[34]  Alexander Ferrein,et al.  Robot Controllers for Highly Dynamic Environments with Real-time Constraints , 2010, KI - Künstliche Intelligenz.

[35]  Raymond Reiter,et al.  Knowledge in Action: Logical Foundations for Specifying and Implementing Dynamical Systems , 2001 .

[36]  László T. Kóczy,et al.  Improvements and critique on Sugeno's and Yasukawa's qualitative modeling , 2002, IEEE Trans. Fuzzy Syst..

[37]  Andrew U. Frank,et al.  Theories and Methods of Spatio-Temporal Reasoning in Geographic Space , 1992, Lecture Notes in Computer Science.

[38]  Stefan Wölfl,et al.  Right-of-Way Rules as Use Case for Integrating GOLOG and Qualitative Reasoning , 2009, KI.

[39]  Javier Ruiz-del-Solar,et al.  Domestic Service Robots in the Real World , 2012, J. Intell. Robotic Syst..

[40]  John G. Gibbons Knowledge in Action , 2001 .

[41]  Bernhard Nebel,et al.  Qualitative Spatial Reasoning Using Constraint Calculi , 2007, Handbook of Spatial Logics.

[42]  Alexander Ferrein,et al.  Football is coming home , 2006, PCAR '06.

[43]  Lotfi A. Zadeh,et al.  Knowledge Representation in Fuzzy Logic , 1996, IEEE Trans. Knowl. Data Eng..

[44]  M. De Cock,et al.  Fuzzy Spatial Relations between Vague Regions , 2006, 2006 3rd International IEEE Conference Intelligent Systems.

[45]  Wilfried Brauer,et al.  Spatial Cognition III , 2003, Lecture Notes in Computer Science.

[46]  David M. Mark,et al.  Cognitive and Linguistic Aspects of Geographic Space: New Perspectives on Geographic Information Research , 1991 .

[47]  Daniel Hernández,et al.  Relative representation of spatial knowledge: the 2-D case , 1990, Forschungsberichte, TU Munich.

[48]  J. Piaget The construction of reality in the child , 1954 .

[49]  Honghai Liu,et al.  Fuzzy Qualitative Robot Kinematics , 2008, IEEE Transactions on Fuzzy Systems.

[50]  Wilfried Brauer,et al.  Spatial Cognition II, Integrating Abstract Theories, Empirical Studies, Formal Methods, and Practical Applications , 2000 .

[51]  Soumitra Dutta,et al.  Qualitative Spatial Reasoning: A Semi-quantitative Approach Using Fuzzy Logic , 1989, SSD.

[52]  Alexander Ferrein,et al.  Fuzzy Representations and Control for Domestic Service Robots in Golog , 2011, ICIRA.

[53]  Alexander Ferrein,et al.  Embedding fuzzy controllers in golog , 2009, 2009 IEEE International Conference on Fuzzy Systems.

[54]  Philippe Smets,et al.  Fuzzy Quanlitative Modeling , 1988, IPMU.

[55]  A. Safiotti,et al.  Fuzzy logic in autonomous robotics: behavior coordination , 1997, Proceedings of 6th International Fuzzy Systems Conference.

[56]  Alexander Ferrein,et al.  A Fuzzy Set Semantics for Qualitative Fluents in the Situation Calculus , 2008, ICIRA.

[57]  Craig Boutilier,et al.  Decision-Theoretic, High-Level Agent Programming in the Situation Calculus , 2000, AAAI/IAAI.

[58]  John Yen,et al.  Fuzzy logic as a basis for specifying imprecise requirements , 1993, [Proceedings 1993] Second IEEE International Conference on Fuzzy Systems.

[59]  Anthony G. Cohn,et al.  Qualitative Spatial Representation and Reasoning: An Overview , 2001, Fundam. Informaticae.

[60]  J. Mendel Fuzzy logic systems for engineering: a tutorial , 1995, Proc. IEEE.

[61]  Narasimha Bolloju,et al.  Formulation of qualitative models using fuzzy logic , 1996, Decis. Support Syst..

[62]  Henrik Grosskreutz,et al.  Probabilistic Projection and Belief Update in the pGOLOG Framework , 2000, GI Jahrestagung.

[63]  Christian Freksa,et al.  On the utilization of spatial structures for cognitively plausible and efficient reasoning , 1992, [Proceedings] 1992 IEEE International Conference on Systems, Man, and Cybernetics.

[64]  Anthony G. Cohn,et al.  A Spatial Logic based on Regions and Connection , 1992, KR.

[65]  Rolf Isermann,et al.  On fuzzy logic applications for automatic control, supervision, and fault diagnosis , 1998, IEEE Trans. Syst. Man Cybern. Part A.

[66]  Gerhard Lakemeyer,et al.  Cognitive Robotics , 2008, Handbook of Knowledge Representation.

[67]  R. R. Yager,et al.  Uncertainty and Intelligent Systems , 1988, Lecture Notes in Computer Science.