Weights of Modular Forms on so + (2, l ) and Congruences Between Eisenstein Series and Cusp forms of Half-Integral Weight on SL 2
暂无分享,去创建一个
[1] Jim Brown. Saito–Kurokawa lifts and applications to the Bloch–Kato conjecture , 2005, Compositio Mathematica.
[2] R. Hill. Fractional weights and non-congruence subgroups , 2003 .
[3] W. J. McGraw. The rationality of vector valued modular forms associated with the Weil representation , 2003 .
[4] J. Bruinier,et al. On two geometric theta lifts , 2002, math/0212286.
[5] J. Bruinier,et al. Eisenstein series attached to lattices¶and modular forms on orthogonal groups , 2001 .
[6] R. Borcherds. THE GROSS-KOHNEN-ZAGIER THEOREM IN HIGHER DIMENSIONS , 1997, alg-geom/9710002.
[7] R. Borcherds. Automorphic forms with singularities on Grassmannians , 1996, alg-geom/9609022.
[8] M. Keating. THE CLASSICAL GROUPS AND K‐THEORY (Grundlehren der Mathematischen Wissenschaften 291) , 1992 .
[9] W. Kohnen,et al. Congruences between cusp forms and eisenstein series of half-integral weight , 1987 .
[10] N. Koblitz. p-Adic congruences and modular forms of half integer weight , 1986 .
[11] T. Shintani. On construction of holomorphic cusp forms of half integral weight , 1975, Nagoya Mathematical Journal.
[12] A. Weil. Sur certains groupes d'opérateurs unitaires , 1964 .
[13] M. Kneser. Normalteiler ganzzahliger Spingruppen. , 1979 .
[14] H. M. Stark,et al. Modular forms of weight 1/2 , 1977 .