Proximinality in Banach Space-Valued Grand Bochner-Lebesgue Spaces with Variable Exponent
暂无分享,去创建一个
[1] M. Izuki,et al. Hardy Spaces Associated to Critical Herz Spaces with Variable Exponent , 2016 .
[2] A. Almeida,et al. Atomic and molecular decompositions in variable exponent 2-microlocal spaces and applications , 2015, 1508.02364.
[3] Fathi B. Saidi,et al. BEST APPROXIMATION IN L1 (I, X) , 2016 .
[4] M. Izuki,et al. Duality of Besov, Triebel–Lizorkin and Herz spaces with variable exponents , 2014 .
[5] Jingshi Xu. Proximinality in Banach space valued Musielak-Orlicz spaces , 2014, Journal of Inequalities and Applications.
[6] H. Rafeiro,et al. Grand Bochner–Lebesgue space and its associate space , 2014 .
[7] Bartosz Micherda,et al. On proximinal subspaces of vector-valued Orlicz-Musielak spaces , 2013, J. Approx. Theory.
[8] S. Samko. Variable Exponent Herz Spaces , 2013 .
[9] Jingshi Xu,et al. GEOMETRIC PROPERTIES OF BANACH SPACE VALUED BOCHNER-LEBESGUE SPACES WITH VARIABLE EXPONENT , 2013 .
[10] A. Almeida,et al. Maximal, potential and singular type operators on Herz spaces with variable exponents , 2012 .
[11] Y. Sawano,et al. Hardy spaces with variable exponents and generalized Campanato spaces , 2012 .
[12] M. Izuki. Vector-valued inequalities on herz spaces and characterizations of herz-sobolev spaces with variable exponent , 2010 .
[13] M. Izuki. Boundedness of commutators on Herz spaces with variable exponent , 2010 .
[14] Peter Hästö,et al. Overview of differential equations with non-standard growth , 2010 .
[15] Zhibin Li,et al. Variable exponent functionals in image restoration , 2010, Appl. Math. Comput..
[16] M. Izuki. Boundedness of sublinear operators on Herz spaces with variable exponent and application to wavelet characterization , 2010 .
[17] P. Hästö,et al. Besov spaces with variable smoothness and integrability , 2010 .
[18] Henning Kempka. Atomic, molecular and wavelet decomposition of generalized 2-microlocal Besov spaces , 2010 .
[19] Henning Kempka. 2-Microlocal Besov and Triebel-Lizorkin Spaces of Variable Integrability , 2009 .
[20] J. Xu. The relation between variable Bessel potential spaces and Triebel–Lizorkin spaces , 2008 .
[21] Jingshi Xu. VARIABLE BESOV AND TRIEBEL-LIZORKIN SPACES , 2008 .
[22] S. Roudenko,et al. Function spaces of variable smoothness and integrability , 2007, 0711.2354.
[23] Yunmei Chen,et al. Variable Exponent, Linear Growth Functionals in Image Restoration , 2006, SIAM J. Appl. Math..
[24] B. Cascales,et al. Measurable selectors for the metric projection , 2003 .
[25] R. Khalil,et al. Proximunalty in Orlicz-bochner Function Spaces , 2003 .
[26] M. Ruzicka,et al. Electrorheological Fluids: Modeling and Mathematical Theory , 2000 .
[27] Y. Zhaoyong,et al. Pointwise Best Approximation in the Space of Strongly Measurable Functions with Applications to Best Approximation in Lp(µ,X) , 1994 .
[28] T. Iwaniec,et al. On the integrability of the Jacobian under minimal hypotheses , 1992 .
[29] Roshdi Khalil,et al. Best approximation in L p (μ, X ), II , 1989 .
[30] W. Light,et al. Proximinality in $L^p(S,Y)$ , 1989 .
[31] R. Khalil. Best approximation in LP (I, X) , 1983, Mathematical Proceedings of the Cambridge Philosophical Society.