Proximinality in Banach Space-Valued Grand Bochner-Lebesgue Spaces with Variable Exponent

[1]  M. Izuki,et al.  Hardy Spaces Associated to Critical Herz Spaces with Variable Exponent , 2016 .

[2]  A. Almeida,et al.  Atomic and molecular decompositions in variable exponent 2-microlocal spaces and applications , 2015, 1508.02364.

[3]  Fathi B. Saidi,et al.  BEST APPROXIMATION IN L1 (I, X) , 2016 .

[4]  M. Izuki,et al.  Duality of Besov, Triebel–Lizorkin and Herz spaces with variable exponents , 2014 .

[5]  Jingshi Xu Proximinality in Banach space valued Musielak-Orlicz spaces , 2014, Journal of Inequalities and Applications.

[6]  H. Rafeiro,et al.  Grand Bochner–Lebesgue space and its associate space , 2014 .

[7]  Bartosz Micherda,et al.  On proximinal subspaces of vector-valued Orlicz-Musielak spaces , 2013, J. Approx. Theory.

[8]  S. Samko Variable Exponent Herz Spaces , 2013 .

[9]  Jingshi Xu,et al.  GEOMETRIC PROPERTIES OF BANACH SPACE VALUED BOCHNER-LEBESGUE SPACES WITH VARIABLE EXPONENT , 2013 .

[10]  A. Almeida,et al.  Maximal, potential and singular type operators on Herz spaces with variable exponents , 2012 .

[11]  Y. Sawano,et al.  Hardy spaces with variable exponents and generalized Campanato spaces , 2012 .

[12]  M. Izuki Vector-valued inequalities on herz spaces and characterizations of herz-sobolev spaces with variable exponent , 2010 .

[13]  M. Izuki Boundedness of commutators on Herz spaces with variable exponent , 2010 .

[14]  Peter Hästö,et al.  Overview of differential equations with non-standard growth , 2010 .

[15]  Zhibin Li,et al.  Variable exponent functionals in image restoration , 2010, Appl. Math. Comput..

[16]  M. Izuki Boundedness of sublinear operators on Herz spaces with variable exponent and application to wavelet characterization , 2010 .

[17]  P. Hästö,et al.  Besov spaces with variable smoothness and integrability , 2010 .

[18]  Henning Kempka Atomic, molecular and wavelet decomposition of generalized 2-microlocal Besov spaces , 2010 .

[19]  Henning Kempka 2-Microlocal Besov and Triebel-Lizorkin Spaces of Variable Integrability , 2009 .

[20]  J. Xu The relation between variable Bessel potential spaces and Triebel–Lizorkin spaces , 2008 .

[21]  Jingshi Xu VARIABLE BESOV AND TRIEBEL-LIZORKIN SPACES , 2008 .

[22]  S. Roudenko,et al.  Function spaces of variable smoothness and integrability , 2007, 0711.2354.

[23]  Yunmei Chen,et al.  Variable Exponent, Linear Growth Functionals in Image Restoration , 2006, SIAM J. Appl. Math..

[24]  B. Cascales,et al.  Measurable selectors for the metric projection , 2003 .

[25]  R. Khalil,et al.  Proximunalty in Orlicz-bochner Function Spaces , 2003 .

[26]  M. Ruzicka,et al.  Electrorheological Fluids: Modeling and Mathematical Theory , 2000 .

[27]  Y. Zhaoyong,et al.  Pointwise Best Approximation in the Space of Strongly Measurable Functions with Applications to Best Approximation in Lp(µ,X) , 1994 .

[28]  T. Iwaniec,et al.  On the integrability of the Jacobian under minimal hypotheses , 1992 .

[29]  Roshdi Khalil,et al.  Best approximation in L p (μ, X ), II , 1989 .

[30]  W. Light,et al.  Proximinality in $L^p(S,Y)$ , 1989 .

[31]  R. Khalil Best approximation in LP (I, X) , 1983, Mathematical Proceedings of the Cambridge Philosophical Society.