A nonlinear composite shell element with continuous interlaminar shear stresses

A numerical model for layered composite structures based on a geometrical nonlinear shell theory is presented. The kinematic is based on a multi-director theory, thus the in-plane displacements of each layer are described by independent director vectors. Using the isoparametric apporach a finite element formulation for quadrilaterals is developed. Continuity of the interlaminar shear stresses is obtained within the nonlinear solution process. Several examples are presented to illustrate the performance of the developed numerical model.

[1]  J. Whitney,et al.  Shear Deformation in Heterogeneous Anisotropic Plates , 1970 .

[2]  Franz G. Rammerstorfer,et al.  A layered composite shell element for elastic and thermoelastic stress and stability analysis at large deformations , 1990 .

[3]  Hung-Sying Jing,et al.  Partial hybrid stress element for the analysis of thick laminated composite plates , 1989 .

[4]  J. Reddy A Simple Higher-Order Theory for Laminated Composite Plates , 1984 .

[5]  J. C. Simo,et al.  On stress resultant geometrically exact shell model. Part I: formulation and optimal parametrization , 1989 .

[7]  Satya N. Atluri,et al.  Postbuckling analysis of stiffened laminated composite panels, using a higher-order shear deformation theory , 1992 .

[8]  Marcelo Epstein,et al.  A finite element formulation for multilayered and thick plates , 1983 .

[9]  K. Chandrashekhara,et al.  Nonlinear analysis of laminated shells including transverse shear strains , 1985 .

[10]  Peter Wriggers,et al.  Theory and numerics of thin elastic shells with finite rotations , 1989 .

[11]  Dahsin Liu,et al.  An interlaminar stress continuity theory for laminated composite analysis , 1992 .

[12]  J. N. Reddy,et al.  A plate bending element based on a generalized laminate plate theory , 1988 .

[13]  Werner Wagner,et al.  A simple finite rotation formulation for composite shell elements , 1994 .

[14]  Marcelo Epstein,et al.  Nonlinear analysis of multilayered shells , 1977 .

[15]  M. Levinson,et al.  An accurate, simple theory of the statics and dynamics of elastic plates , 1980 .

[16]  E. Stein,et al.  A new finite element formulation for cylindrical shells of composite material , 1993 .

[17]  N. Pagano,et al.  Exact Solutions for Rectangular Bidirectional Composites and Sandwich Plates , 1970 .

[18]  I. Babuska,et al.  Hierarchic models for laminated composites , 1992 .

[19]  J. N. Reddy,et al.  A mixed shear flexible finite element for the analysis of laminated plates , 1984 .

[20]  P. Wriggers,et al.  Large Deformations of Thin Shells: Theory and Finite-Element-Diskretization , 1990 .

[21]  Franz G. Rammerstorfer,et al.  Composite and Sandwich Shells , 1992 .

[22]  Hidenori Murakami,et al.  A high-order laminated plate theory with improved in-plane responses☆ , 1987 .

[23]  Rakesh K. Kapania,et al.  Recent advances in analysis of laminated beams and plates. Part I - Sheareffects and buckling. , 1989 .

[24]  B. Peseux,et al.  Equivalent homogeneous finite element for composite materials via reissner principle. Part I: Finite element for plates , 1991 .

[25]  Alexander Tessler,et al.  A Computationally viable higher‐order theory for laminated composite plates , 1991 .

[26]  Ahmed K. Noor,et al.  Assessment of computational models for multilayered composite cylinders , 1991 .

[27]  J. Z. Zhu,et al.  The finite element method , 1977 .

[28]  Z. H. Li,et al.  Elastic-plastic analysis of laminated anisotropic shells by a refined finite element laminated model , 1989 .

[29]  S. Tsai,et al.  Introduction to composite materials , 1980 .

[30]  P. Lardeur,et al.  Composite plate analysis using a new discrete shear triangular finite element , 1989 .

[31]  Peter M. Pinsky,et al.  A mixed finite element for laminated composite plates based on the use of bubble functions , 1989 .