Port-based modeling and control for efficient bipedal walking robots

This thesis aims to provide a framework for modeling, analysis, and efficient control of walking robots. The framework uses a port-Hamiltonian system description to express the dynamics of rigid mechanisms and their interaction with the ground. The structure of the resulting models forms the basis for the development of general analysis and control techniques.

[1]  T McGeer,et al.  Dynamics and control of bipedal locomotion. , 1993, Journal of theoretical biology.

[2]  Ernest D. Fasse,et al.  Some Applications of Screw Theory to Lumped-Parameter Modeling of Visco-Elastically Coupled Rigid Bo , 2000 .

[3]  John Milnor,et al.  Analytic Proofs of the “Hairy Ball Theorem” and the Brouwer Fixed Point Theorem , 1978 .

[4]  Antonie J. van den Bogert,et al.  Exotendons for assistance of human locomotion , 2003 .

[5]  Neville Hogan,et al.  Impedance Control: An Approach to Manipulation , 1984, 1984 American Control Conference.

[6]  Uri M. Ascher,et al.  Computer methods for ordinary differential equations and differential-algebraic equations , 1998 .

[7]  Christine Chevallereau Time-scaling control for an underactuated biped robot , 2003, IEEE Trans. Robotics Autom..

[8]  Anindya Chatterjee,et al.  Speed, efficiency, and stability of small-slope 2D passive dynamic bipedal walking , 1998, Proceedings. 1998 IEEE International Conference on Robotics and Automation (Cat. No.98CH36146).

[9]  Jun-Ho Oh,et al.  System Design and Dynamic Walking of Humanoid Robot KHR-2 , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[10]  J. M. Selig Geometric Fundamentals of Robotics , 2004, Monographs in Computer Science.

[11]  Stefano Stramigioli,et al.  Port Based Modeling of Spatial Visco-Elastic Contacts , 2004, Eur. J. Control.

[12]  Kikuo Fujimura,et al.  The intelligent ASIMO: system overview and integration , 2002, IEEE/RSJ International Conference on Intelligent Robots and Systems.

[13]  J. Pratt,et al.  Exploiting Natural Dynamics in the Control of a 3 D Bipedal Walking Simulation , 1999 .

[14]  J. Willems Paradigms and puzzles in the theory of dynamical systems , 1991 .

[15]  Romeo Ortega,et al.  Putting energy back in control , 2001 .

[16]  Vincent Acary,et al.  Toward a multiple impact law: the 3-ball chain example. , 2003 .

[17]  B. Dubrovin,et al.  Modern geometry--methods and applications , 1984 .

[18]  C. Glocker On frictionless impact models in rigid-body systems , 2001, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[19]  A. Schaft,et al.  Port-controlled Hamiltonian systems : modelling origins and systemtheoretic properties , 1992 .

[20]  Stefano Stramigioli,et al.  Geometric grasping and telemanipulation , 2001, Proceedings 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems. Expanding the Societal Role of Robotics in the the Next Millennium (Cat. No.01CH37180).

[21]  Joel W. Burdick,et al.  Nonholonomic mechanics and locomotion: the snakeboard example , 1994, Proceedings of the 1994 IEEE International Conference on Robotics and Automation.

[22]  Tariq Rahman,et al.  A review of design issues in rehabilitation robotics with reference to North American research , 1995 .

[23]  R. Gilmore,et al.  Lie Groups, Lie Algebras, and Some of Their Applications , 1974 .

[24]  Joel W. Burdick,et al.  The Geometric Mechanics of Undulatory Robotic Locomotion , 1998, Int. J. Robotics Res..

[25]  A. Ruina,et al.  Two Interpretations of Rigidity in Rigid-Body Collisions , 1998 .

[26]  C. Glocker,et al.  Concepts for modeling impacts without friction , 2004 .

[27]  Subhash Suri,et al.  Analyzing bounding boxes for object intersection , 1999, TOGS.

[28]  Stefano Stramigioli,et al.  Variable spatial springs for robot control applications , 2001, Proceedings 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems. Expanding the Societal Role of Robotics in the the Next Millennium (Cat. No.01CH37180).

[29]  Cynthia Breazeal,et al.  Toward sociable robots , 2003, Robotics Auton. Syst..

[30]  Martijn Wisse,et al.  Design and Construction of MIKE; a 2-D Autonomous Biped Based on Passive Dynamic Walking , 2006 .

[31]  L. Trefethen,et al.  Numerical linear algebra , 1997 .

[32]  R. Penrose,et al.  Impossible objects: a special type of visual illusion. , 1958, British journal of psychology.

[33]  Josip Loncaric,et al.  Geometrical analysis of compliant mechanisms in robotics , 1985 .

[34]  H. van der Kooij,et al.  LOPES: selective control of gait functions during the gait rehabilitation of CVA patients , 2005, 9th International Conference on Rehabilitation Robotics, 2005. ICORR 2005..

[35]  L. Geppert,et al.  Qrio, the robot that could , 2004, IEEE Spectrum.

[36]  Takayuki Kanda,et al.  Interactive Robots as Social Partners and Peer Tutors for Children: A Field Trial , 2004, Hum. Comput. Interact..

[37]  P. Vela Averaging and control of nonlinear systems , 2003 .

[38]  J. Marsden,et al.  Introduction to mechanics and symmetry , 1994 .

[39]  Jacquelien M. A. Scherpen,et al.  Passive compensation of nonlinear robot dynamics , 2002, IEEE Transactions on Robotics and Automation.

[40]  W. L. Burke Applied Differential Geometry , 1985 .

[41]  Stefano Stramigioli,et al.  Port-based control of a compass-gait bipedal robot , 2005 .

[42]  Carme Torras,et al.  3D collision detection: a survey , 2001, Comput. Graph..

[43]  Carlos Canudas de Wit,et al.  A new model for control of systems with friction , 1995, IEEE Trans. Autom. Control..

[44]  K. H. Hunt,et al.  Coefficient of Restitution Interpreted as Damping in Vibroimpact , 1975 .

[45]  Dinesh Manocha,et al.  I-COLLIDE: an interactive and exact collision detection system for large-scale environments , 1995, I3D '95.

[46]  Linda Geppert Robotics: QRIO , 2004 .

[47]  Daniel E. Koditschek,et al.  Hybrid zero dynamics of planar biped walkers , 2003, IEEE Trans. Autom. Control..

[48]  Stefano Stramigioli,et al.  Screw bondgraph contact dynamics , 2002, IEEE/RSJ International Conference on Intelligent Robots and Systems.

[49]  Daniel E. Koditschek,et al.  Analysis of a Simplified Hopping Robot , 1988, Proceedings. 1988 IEEE International Conference on Robotics and Automation.

[50]  Stefano Stramigioli,et al.  Port-Based Asymptotic Curve Tracking for Mechanical Systems , 2004, Eur. J. Control.

[51]  S. Wiggins Introduction to Applied Nonlinear Dynamical Systems and Chaos , 1989 .

[52]  Suguru Arimoto,et al.  A New Feedback Method for Dynamic Control of Manipulators , 1981 .

[53]  R. McN. Alexander,et al.  Three Uses for Springs in Legged Locomotion , 1990, Int. J. Robotics Res..

[54]  Peter C. Breedveld Port-based modeling of mechatronic systems , 2004, Math. Comput. Simul..

[55]  Stefano Stramigioli,et al.  Modeling the kinematics and dynamics of compliant contact , 2003, 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422).

[56]  Arjan van der Schaft,et al.  Geometric scattering in robotic telemanipulation , 2002, IEEE Trans. Robotics Autom..

[57]  A. Ruina,et al.  Efficiency, speed, and scaling of two-dimensional passive-dynamic walking , 2000 .

[58]  Tad McGeer,et al.  Passive Dynamic Walking , 1990, Int. J. Robotics Res..

[59]  J. Thoma Entropy and mass flow for energy conversion , 1975 .

[60]  van der Arjan Schaft,et al.  On the Hamiltonian Formulation of Nonholonomic Mechanical Systems , 1994 .

[61]  Mario W. Gomes,et al.  A five-link 2D brachiating ape model with life-like zero-energy-cost motions. , 2005, Journal of theoretical biology.

[62]  A. Bloch,et al.  Nonholonomic Mechanics and Control , 2004, IEEE Transactions on Automatic Control.

[63]  Friedrich Pfeiffer,et al.  Multibody Dynamics with Unilateral Contacts , 1996 .

[64]  T. Chow,et al.  Classical Mechanics, Second Edition , 1995 .

[65]  C. Breazeal Towards Sociable Robots , 2002 .

[66]  Richard W. Cottle,et al.  Linear Complementarity Problem. , 1992 .

[67]  Bernard Espiau,et al.  A Study of the Passive Gait of a Compass-Like Biped Robot , 1998, Int. J. Robotics Res..

[68]  Jan C. Willems,et al.  Introduction to mathematical systems theory: a behavioral approach, Texts in Applied Mathematics 26 , 1999 .

[69]  Stefano Stramigioli,et al.  Port-Based Modeling and Analysis of Snakboard Locomotion , 2004 .

[70]  Goran Golo,et al.  Interconnection structures in port-based modelling: tools for analysis and simulation , 2002 .

[71]  James P. Ostrowski Computing reduced equations for robotic systems with constraints and symmetries , 1999, IEEE Trans. Robotics Autom..

[72]  Fumihiko Asano,et al.  Extended passive velocity field control with variable velocity fields for a kneed biped , 2001, Adv. Robotics.

[73]  Philip M. Hubbard,et al.  Approximating polyhedra with spheres for time-critical collision detection , 1996, TOGS.

[74]  Stefano Stramigioli,et al.  Passive Asymptotic Curve Tracking , 2003 .

[75]  Audra E. Kosh,et al.  Linear Algebra and its Applications , 1992 .

[76]  Stefano Stramigioli,et al.  Energy-based model-reduction of nonholonomic mechanical systems , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[77]  Peter C. Breedveld,et al.  Modelling of physical systems for the design and control of mechatronic systems , 2003, Annu. Rev. Control..

[78]  Martijn Wisse,et al.  A Three-Dimensional Passive-Dynamic Walking Robot with Two Legs and Knees , 2001, Int. J. Robotics Res..

[79]  Zhiwei Luo,et al.  Some extensions of passive walking formula to active biped robots , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[80]  Kazuo Tanie President's message - Let's Work More on Practical Problems! , 2005, IEEE Robotics Autom. Mag..

[81]  R. Rosenberg,et al.  System Dynamics: Modeling and Simulation of Mechatronic Systems , 2006 .

[82]  Tad McGeer,et al.  Passive walking with knees , 1990, Proceedings., IEEE International Conference on Robotics and Automation.

[83]  Niels Beekman Analysis and development of a 2D walking machine , 2004 .

[84]  Arthur D. Kuo,et al.  Stabilization of Lateral Motion in Passive Dynamic Walking , 1999, Int. J. Robotics Res..

[85]  Miomir Vukobratovic,et al.  Zero-Moment Point - Thirty Five Years of its Life , 2004, Int. J. Humanoid Robotics.

[86]  Carlos Canudas-de-Wit,et al.  Constructive tool for orbital stabilization of underactuated nonlinear systems: virtual constraints approach , 2005, IEEE Transactions on Automatic Control.

[87]  David J. Montana,et al.  The Kinematics of Contact and Grasp , 1988, Int. J. Robotics Res..

[88]  P. Krishnaprasad,et al.  Nonholonomic mechanical systems with symmetry , 1996 .

[89]  M. Žefran,et al.  A Geometrical Approach to the Study of the Cartesian Stiffness Matrix , 2002 .

[90]  Fredrik Rehnmark,et al.  Robonaut: NASA's Space Humanoid , 2000, IEEE Intell. Syst..

[91]  Richard M. Murray,et al.  A Mathematical Introduction to Robotic Manipulation , 1994 .

[92]  M. Spong,et al.  CONTROLLED SYMMETRIES AND PASSIVE WALKING , 2002 .

[93]  Jerry E. Pratt,et al.  The RoboKnee: an exoskeleton for enhancing strength and endurance during walking , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[94]  Katsuhisa Furuta,et al.  Passive velocity field control of biped walking robot , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[95]  David J. Montana,et al.  The kinematics of contact with compliance , 1989, Proceedings, 1989 International Conference on Robotics and Automation.

[96]  Stefano Stramigioli,et al.  Modeling and IPC Control of Interactive Mechanical Systems - A Coordinate-Free Approach , 2001 .

[97]  Francesco Bullo,et al.  On mechanical control systems with nonholonomic constraints and symmetries , 2002, Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292).

[98]  Gijs van Oort Strategies for stabilizing a 3D dynamically walking robot , 2005 .

[99]  Ernest D. Fasse,et al.  On the Spatial Compliance of Robotic Manipulators , 1997 .

[100]  Stefano Stramigioli,et al.  Optimization of Mass and Stiffness Distribution for Efficient Bipedal Walking , 2005 .

[101]  Stefano Stramigioli,et al.  Realisation of an energy efficient walking robot , 2006 .

[102]  Joseph S. B. Mitchell,et al.  Efficient Collision Detection Using Bounding Volume Hierarchies of k-DOPs , 1998, IEEE Trans. Vis. Comput. Graph..

[103]  Tad McGeer Powered flight, child's play, silly wheels and walking machines , 1989, Proceedings, 1989 International Conference on Robotics and Automation.

[104]  Martijn Wisse,et al.  Essentials of dynamic walking; analysis and design of two-legged robots , 2004 .

[105]  W. Rossmann Lie Groups: An Introduction through Linear Groups , 2002 .

[106]  Joel E. Chestnutt,et al.  An actuator with physically variable stiffness for highly dynamic legged locomotion , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[107]  Perry Y. Li,et al.  Passive velocity field control of mechanical manipulators , 1995, IEEE Trans. Robotics Autom..

[108]  A. J. van der Schaft,et al.  Port-controlled Hamiltonian Systems:Modelling Origins and System-Theoretic Properties , 1992 .

[109]  Tad McGeer,et al.  Passive Dynamic Biped Catalogue, 1991 , 1991, ISER.