Large vector spaces of block-symmetric strong linearizations of matrix polynomials
暂无分享,去创建一个
Froilán M. Dopico | Susana Furtado | S. Furtado | M. Bueno | María Bueno | M. Rychnovsky | M. Rychnovsky | F. Dopico
[1] Nicholas J. Higham,et al. Definite Matrix Polynomials and their Linearization by Definite Pencils , 2009, SIAM J. Matrix Anal. Appl..
[2] Françoise Tisseur,et al. Hermitian matrix polynomials with real eigenvalues of definite type. Part I: Classification☆ , 2012 .
[3] P. Dooren. The Computation of Kronecker's Canonical Form of a Singular Pencil , 1979 .
[4] Peter Lancaster,et al. Lambda-matrices and vibrating systems , 2002 .
[5] Alex Townsend,et al. Vector Spaces of Linearizations for Matrix Polynomials: A Bivariate Polynomial Approach , 2016, SIAM J. Matrix Anal. Appl..
[6] S. Furtado,et al. Structured strong linearizations from Fiedler pencils with repetition II , 2014 .
[7] Volker Mehrmann,et al. Jordan structures of alternating matrix polynomials , 2010 .
[8] Froilán M. Dopico,et al. Recovery of Eigenvectors and Minimal Bases of Matrix Polynomials from Generalized Fiedler Linearizations , 2011, SIAM J. Matrix Anal. Appl..
[9] Paul M. Terwilliger,et al. The A-like matrices for a hypercube , 2010, 1010.2606.
[10] S. Liberty,et al. Linear Systems , 2010, Scientific Parallel Computing.
[11] Karl Meerbergen,et al. The Quadratic Eigenvalue Problem , 2001, SIAM Rev..
[12] H. O. Foulkes. Abstract Algebra , 1967, Nature.
[13] Volker Mehrmann,et al. Skew-symmetric matrix polynomials and their Smith forms , 2013 .
[14] Froilán M. Dopico,et al. Palindromic companion forms for matrix polynomials of odd degree , 2011, J. Comput. Appl. Math..
[15] S. Furtado,et al. Palindromic linearizations of a matrix polynomial of odd degreee obtained from Fiedler pencils with repetition , 2012 .
[16] F. M. Dopico,et al. LINEARIZATIONS OF SINGULAR MATRIX POLYNOMIALS AND THE RECOVERY OF MINIMAL INDICES , 2009 .
[17] Volker Mehrmann,et al. Smith Forms of Palindromic Matrix Polynomials , 2011 .
[18] S. Vologiannidis,et al. Linearizations of Polynomial Matrices with Symmetries and Their Applications. , 2005, Proceedings of the 2005 IEEE International Symposium on, Mediterrean Conference on Control and Automation Intelligent Control, 2005..
[19] E. Antoniou,et al. A new family of companion forms of polynomial matrices , 2004 .
[20] Froilán M. Dopico,et al. Linearizations of Hermitian Matrix Polynomials Preserving the Sign Characteristic , 2015, SIAM J. Matrix Anal. Appl..
[21] Frann Coise Tisseur. Backward Error and Condition of Polynomial Eigenvalue Problems , 1999 .
[22] Froilán M. Dopico,et al. Spectral equivalence of matrix polynomials and the index sum theorem , 2014 .
[23] I. Gohberg,et al. General theory of regular matrix polynomials and band Toeplitz operators , 1988 .
[24] Volker Mehrmann,et al. Structured Polynomial Eigenvalue Problems: Good Vibrations from Good Linearizations , 2006, SIAM J. Matrix Anal. Appl..
[25] Efstathios N. Antoniou,et al. A permuted factors approach for the linearization of polynomial matrices , 2011, Math. Control. Signals Syst..
[26] S. Furtado,et al. Structured strong linearizations from Fiedler pencils with repetition I , 2014 .
[27] David S. Watkins,et al. POLYNOMIAL EIGENVALUE PROBLEMS WITH HAMILTONIAN STRUCTURE , 2002 .
[28] Nicholas J. Higham,et al. Symmetric Linearizations for Matrix Polynomials , 2006, SIAM J. Matrix Anal. Appl..
[29] T. Willmore. Algebraic Geometry , 1973, Nature.
[30] P. Lancaster,et al. Indefinite Linear Algebra and Applications , 2005 .
[31] Volker Mehrmann,et al. Vector Spaces of Linearizations for Matrix Polynomials , 2006, SIAM J. Matrix Anal. Appl..