Electrochemical Fabrication and Characterization of p-CuSCN/n-Fe2O3 Heterojunction Devices for Hydrogen Production

This work was supported by the Ministry of High Education and Scientific Research (Tunisia), Ministerio de Economia y Competitividad (ENE2016-77798-C4-2-R) and Generalitat Valenciana (Prometeus 2014/044).

[1]  Yan-Gu Lin,et al.  Novel ZnO/Fe₂O₃ Core-Shell Nanowires for Photoelectrochemical Water Splitting. , 2015, ACS applied materials & interfaces.

[2]  Tarek A. Kandiel,et al.  Enhanced Photoelectrochemical Water Oxidation on Nanostructured Hematite Photoanodes via p-CaFe2O4/n-Fe2O3 Heterojunction Formation , 2015 .

[3]  U. Waghmare,et al.  Improved Photoelectrochemical Water Splitting Performance of Cu2O/SrTiO3 Heterojunction Photoelectrode , 2014 .

[4]  Shaohua Shen,et al.  Photoelectrochemical activity of ZnFe2O4 modified α-Fe2O3 nanorod array films , 2014 .

[5]  R. Toth,et al.  Photonic light trapping in self-organized all-oxide microspheroids impacts photoelectrochemical water splitting , 2014 .

[6]  W. Basirun,et al.  A layer-by-layer assembled graphene/zinc sulfide/polypyrrole thin-film electrode via electrophoretic deposition for solar cells , 2014 .

[7]  Li Li,et al.  Silicon/hematite core/shell nanowire array decorated with gold nanoparticles for unbiased solar water oxidation. , 2014, Nano letters.

[8]  K. Sivula,et al.  Photoelectrochemical Tandem Cells for Solar Water Splitting , 2013 .

[9]  Wei‐De Zhang,et al.  MoS2/CdS Heterojunction with High Photoelectrochemical Activity for H2 Evolution under Visible Light: The Role of MoS2 , 2013 .

[10]  G. Rahman,et al.  Electrodeposited nanostructured α-Fe2O3 thin films for solar water splitting: Influence of Pt doping on photoelectrochemical performance , 2013 .

[11]  A. Amassian,et al.  Hole‐Transporting Transistors and Circuits Based on the Transparent Inorganic Semiconductor Copper(I) Thiocyanate (CuSCN) Processed from Solution at Room Temperature , 2013, Advanced materials.

[12]  Pingyun Feng,et al.  A three-dimensional branched cobalt-doped α-Fe2O3 nanorod/MgFe2O4 heterojunction array as a flexible photoanode for efficient photoelectrochemical water oxidation. , 2013, Angewandte Chemie.

[13]  Fan Zuo,et al.  Visible light-driven α-Fe₂O₃ nanorod/graphene/BiV₁-xMoxO₄ core/shell heterojunction array for efficient photoelectrochemical water splitting. , 2012, Nano letters.

[14]  Guodong Liu,et al.  Micro-nano-structured Fe₂O₃:Ti/ZnFe₂O₄ heterojunction films for water oxidation. , 2012, ACS applied materials & interfaces.

[15]  Nianqiang Wu,et al.  Photoelectrochemical performance enhanced by a nickel oxide-hematite p-n junction photoanode. , 2012, Chemical communications.

[16]  Dunwei Wang,et al.  Hematite/Si nanowire dual-absorber system for photoelectrochemical water splitting at low applied potentials. , 2012, Journal of the American Chemical Society.

[17]  S. Yin,et al.  Porous peanut-like Bi2O3-BiVO4 composites with heterojunctions: one-step synthesis and their photocatalytic properties. , 2012, Dalton transactions.

[18]  Thomas W. Hamann,et al.  Splitting water with rust: hematite photoelectrochemistry. , 2012, Dalton transactions.

[19]  Hannes Jónsson,et al.  Solar hydrogen production with semiconductor metal oxides: new directions in experiment and theory. , 2012, Physical chemistry chemical physics : PCCP.

[20]  M. Trari,et al.  Visible light induced hydrogen on the novel hetero-system CuFe2O4/TiO2 , 2011 .

[21]  Yichuan Ling,et al.  Facile synthesis of highly photoactive α-Fe₂O₃-based films for water oxidation. , 2011, Nano letters.

[22]  Michael Grätzel,et al.  Solar water splitting: progress using hematite (α-Fe(2) O(3) ) photoelectrodes. , 2011, ChemSusChem.

[23]  Qiaobao Zhang,et al.  n-ZnO nanorods/p-CuSCN heterojunction light-emitting diodes fabricated by electrochemical method , 2010 .

[24]  T. Varga,et al.  Electronic and Defect Structures of CuSCN , 2010 .

[25]  Thomas F. Jaramillo,et al.  Accelerating materials development for photoelectrochemical hydrogen production: Standards for methods, definitions, and reporting protocols , 2010 .

[26]  L. Spiccia,et al.  Molecular water-oxidation catalysts for photoelectrochemical cells. , 2009, Dalton transactions.

[27]  Mao-Sung Wu,et al.  Electrochemical Growth of Iron Oxide Thin Films with Nanorods and Nanosheets for Capacitors , 2009 .

[28]  Michael Grätzel,et al.  WO3-Fe2O3 Photoanodes for Water Splitting: A Host Scaffold, Guest Absorber Approach , 2009 .

[29]  Zhengguo Jin,et al.  Electrodeposition of p-Type CuSCN Thin Films by a New Aqueous Electrolyte With Triethanolamine Chelation , 2007 .

[30]  Jinhua Ye,et al.  Enhanced photocurrent–voltage characteristics of WO3/Fe2O3 nano-electrodes , 2007 .

[31]  B. Elidrissi,et al.  Physico-chemical, optical and electrochemical properties of iron oxide thin films prepared by spray pyrolysis , 2006 .

[32]  I. E. Grey,et al.  Efficiency of solar water splitting using semiconductor electrodes , 2006 .

[33]  Liduo Wang,et al.  Review of recent progress in solid-state dye-sensitized solar cells , 2006 .

[34]  A. Akl Optical properties of crystalline and non-crystalline iron oxide thin films deposited by spray pyrolysis , 2004 .

[35]  K. Tennakone,et al.  Semiconducting and Photoelectrochemical Properties of n- and p-Type β-CuCNS , 1987 .

[36]  D. Smith,et al.  The structure and polytypism of the β modification of copper(I) thiocyanate , 1981 .

[37]  J. Kennedy,et al.  Photooxidation of Water at α ‐ Fe2 O 3 Electrodes , 1978 .

[38]  R. Shrivastav,et al.  Nanostructured Ti-Fe2O3/Cu2O heterojunction photoelectrode for efficient hydrogen production , 2015 .

[39]  S. Seal,et al.  Kinetics and Growth Mechanism of Electrodeposited Palladium Nanocrystallites , 2004 .

[40]  H. Tuller,et al.  Atmosphere sensitive CuO/ZnO junctions , 1995 .