Conditioned stochastic differential equations: theory, examples and application to finance

Abstract We generalize the notion of Brownian bridge. More precisely, we study a standard Brownian motion for which a certain functional is conditioned to follow a given law. Such processes appear as weak solutions of stochastic differential equations that we call conditioned stochastic differential equations. The link with the theory of initial enlargement of filtration is made and after a general presentation several examples are studied: the conditioning of a standard Brownian motion (and more generally of a Markov diffusion) by its value at a given date, the conditioning of a geometric Brownian motion with negative drift by its quadratic variation and finally the conditioning of a standard Brownian motion by its first hitting time of a given level. As an application, we introduce the notion of weak information on a complete market, and we give a “quantitative” value to this weak information.

[1]  Kyōto Daigaku. Sūgakuka Lectures in mathematics , 1968 .

[2]  M. Yor,et al.  Some Changes of Probabilities Related to a Geometric Brownian Motion Version of Pitman's $2M-X$ Theorem , 1999 .

[3]  D. Nualart The Malliavin Calculus and Related Topics , 1995 .

[4]  Stochastic processes in quantum physics , 2000 .

[5]  J. M. Clark,et al.  The Representation of Functionals of Brownian Motion by Stochastic Integrals , 1970 .

[6]  Dirk Becherer,et al.  Quantifying the Value of Initial Investment Information , 2000 .

[7]  J. Doob Stochastic processes , 1953 .

[8]  I. Karatzas,et al.  Anticipative portfolio optimization , 1996, Advances in Applied Probability.

[9]  L. Alili Canonical Decompositions of Certain Generalized Brownian Bridges , 2002 .

[10]  J. Pitman,et al.  Bessel processes and infinitely divisible laws , 1981 .

[11]  M. Yor,et al.  Continuous martingales and Brownian motion , 1990 .

[12]  Marc Yor,et al.  Some aspects of Brownian motion: part i: some special functionals , 1992 .

[13]  M. Yor,et al.  Filtration des ponts browniens et equations differentielles stochastiques lineaires , 1990 .

[14]  I. Benjamini,et al.  Conditioned Diffusions which are Brownian Bridges , 1997 .

[15]  N. H. Bingham,et al.  Seminar on Stochastic Processes , 1993 .

[16]  M. Yor,et al.  A relationship between Brownian motions with opposite drifts via certain enlargements of the Brownian filtration , 2001 .

[17]  P. Imkeller,et al.  Additional logarithmic utility of an insider , 1998 .

[18]  M. Yor,et al.  Some Absolute Continuity Relationships for Certain Anticipative Transformations of Geometric Brownian Motions , 2001 .

[19]  Paul Malliavin,et al.  Stochastic Analysis , 1997, Nature.

[20]  Fabrice Baudoin,et al.  Further Exponential Generalization of Pitman's $2M-X$ Theorem , 2002 .

[21]  M. Yor,et al.  Grossissements de filtrations: exemples et applications , 1985 .

[22]  D. Dufresne The Distribution of a Perpetuity, with Applications to Risk Theory and Pension Funding , 1990 .

[23]  Hans Föllmer,et al.  Anticipation cancelled by a Girsanov transformation : a paradox on Wiener space , 1993 .

[24]  P. Fitzsimmons Markov Processes with Identical Bridges , 1998, math/9803049.

[25]  Hans Föllmer,et al.  Random fields and diffusion processes , 1988 .

[26]  J. Cole On a quasi-linear parabolic equation occurring in aerodynamics , 1951 .

[27]  Chantha Yoeurp Théorème de Girsanov généralisé et grossissement d'une filtration , 1985 .

[28]  T. Jeulin Semi-Martingales et Grossissement d’une Filtration , 1980 .

[29]  M. Yor,et al.  Calcul stochastique dépendant d'un paramètre , 1978 .

[30]  Jim Pitman,et al.  Markovian Bridges: Construction, Palm Interpretation, and Splicing , 1993 .

[31]  E. Hopf The partial differential equation ut + uux = μxx , 1950 .

[32]  Ioannis Karatzas,et al.  Brownian Motion and Stochastic Calculus , 1987 .

[33]  S. Shreve,et al.  Optimal portfolio and consumption decisions for a “small investor” on a finite horizon , 1987 .

[34]  P. Meyer Sur une transformation du mouvement brownien due à Jeulin et Yor , 1994 .

[35]  J. Jacod,et al.  Grossissement initial, hypothese (H′) et theoreme de Girsanov , 1985 .

[36]  S. Pliska,et al.  Mathematics of Derivative Securities , 1998 .