Convex sets in graphs, II. Minimal path convexity
暂无分享,去创建一个
[1] Robert E. Jamison-Waldner. PARTITION NUMBERS FOR TREES AND ORDERED SETS , 1981 .
[2] Desmond Fearnley-Sander,et al. Universal Algebra , 1982 .
[3] Jürgen Eckhoff,et al. Radon’s theorem revisited , 1979 .
[4] Robert E. Jamison,et al. A Helly theorem for convexity in graphs , 1984, Discret. Math..
[5] Pierre Duchet. Convexity in combinatorial structures , 1987 .
[6] M. Farber,et al. Convexity in graphs and hypergraphs , 1986 .
[7] R. Webster,et al. Convexity spaces. I. The basic properties , 1972 .
[8] H. M. Mulder. The interval function of a graph , 1980 .
[9] George Gratzer,et al. Universal Algebra , 1979 .
[10] P. Duchet,et al. Sous Les Pavés , 1983 .
[11] Phillip Wayne Bean. HELLY AND RADON-TYPE THEOREMS IN INTERVAL CONVEXITY SPACES , 1974 .
[12] Henry Meyniel,et al. Ensemble Convexes dans les Graphes I: Théorèmes de Helly et de Radon pour Graphes et Surfaces , 1983, Eur. J. Comb..
[13] J. Calder. Some Elementary Properties of Interval Convexities , 1971 .
[14] D. C. Kay,et al. Axiomatic convexity theory and relationships between the Carathéodory, Helly, and Radon numbers , 1971 .
[15] Jürgen Schmidt,et al. ber die Rolle der transfiniten Schluweisen in einer allgemeinen Idealtheorie , 1952 .
[16] Paul H. Edelman,et al. The theory of convex geometries , 1985 .
[17] F. W. Levi,et al. On Helly's Theorem and the Axioms of Convexity , 1951 .