Developmental Regulation and Activity-Dependent Maintenance of GABAergic Presynaptic Inhibition onto Rod Bipolar Cell Axonal Terminals

[1]  Yu Fu,et al.  Presynaptic GABAB Receptor Regulates Activity-Dependent Maturation and Patterning of Inhibitory Synapses through Dynamic Allocation of Synaptic Vesicles , 2012, Front. Cell. Neurosci..

[2]  G. Knott,et al.  GABA Signaling Promotes Synapse Elimination and Axon Pruning in Developing Cortical Inhibitory Interneurons , 2012, The Journal of Neuroscience.

[3]  R. Wong,et al.  Coordinated increase in inhibitory and excitatory synapses onto retinal ganglion cells during development , 2011, Neural Development.

[4]  T. Fuchs,et al.  GABAA Receptor Trafficking-Mediated Plasticity of Inhibitory Synapses , 2011, Neuron.

[5]  P. Somogyi,et al.  Quantitative localisation of synaptic and extrasynaptic GABAA receptor subunits on hippocampal pyramidal cells by freeze‐fracture replica immunolabelling , 2010, The European journal of neuroscience.

[6]  R. Wong,et al.  Assembly of the outer retina in the absence of GABA synthesis in horizontal cells , 2010, Neural Development.

[7]  Y. Goda,et al.  Unraveling Mechanisms of Homeostatic Synaptic Plasticity , 2010, Neuron.

[8]  J. Diamond,et al.  Mechanisms Underlying Lateral GABAergic Feedback onto Rod Bipolar Cells in Rat Retina , 2010, The Journal of Neuroscience.

[9]  R. Wong,et al.  Neurotransmission selectively regulates synapse formation in parallel circuits in vivo , 2009, Nature.

[10]  H. Wässle,et al.  Glycinergic Transmission in the Mammalian Retina , 2009, Frontiers in molecular neuroscience.

[11]  J. Lichtman,et al.  Development of presynaptic inhibition onto retinal bipolar cell axon terminals is subclass-specific. , 2008, Journal of neurophysiology.

[12]  M. Pangalos,et al.  Activity-Dependent Ubiquitination of GABAA Receptors Regulates Their Accumulation at Synaptic Sites , 2007, The Journal of Neuroscience.

[13]  Philippe Rostaing,et al.  Activation of Presynaptic GABAA Receptors Induces Glutamate Release from Parallel Fiber Synapses , 2007, The Journal of Neuroscience.

[14]  Erika D Eggers,et al.  Presynaptic inhibition differentially shapes transmission in distinct circuits in the mouse retina , 2007, The Journal of physiology.

[15]  G. Knott,et al.  GAD67-Mediated GABA Synthesis and Signaling Regulate Inhibitory Synaptic Innervation in the Visual Cortex , 2007, Neuron.

[16]  G. Turrigiano Homeostatic signaling: the positive side of negative feedback , 2007, Current Opinion in Neurobiology.

[17]  Joshua H. Singer,et al.  Fast neurotransmitter release triggered by Ca influx through AMPA-type glutamate receptors , 2006, Nature.

[18]  Erika D Eggers,et al.  Receptor and Transmitter Release Properties Set the Time Course of Retinal Inhibition , 2006, The Journal of Neuroscience.

[19]  P. Lukasiewicz,et al.  Presynaptic Inhibition Modulates Spillover, Creating Distinct Dynamic Response Ranges of Sensory Output , 2006, Neuron.

[20]  Sonja M. Wojcik,et al.  A Shared Vesicular Carrier Allows Synaptic Corelease of GABA and Glycine , 2006, Neuron.

[21]  A. Triller,et al.  Activity-Dependent Movements of Postsynaptic Scaffolds at Inhibitory Synapses , 2006, The Journal of Neuroscience.

[22]  Juan Burrone,et al.  Activity-dependent regulation of inhibitory synaptic transmission in hippocampal neurons , 2006, Nature Neuroscience.

[23]  Erika D Eggers,et al.  GABAA, GABAC and glycine receptor‐mediated inhibition differentially affects light‐evoked signalling from mouse retinal rod bipolar cells , 2006, The Journal of physiology.

[24]  Frank Müller,et al.  Retinal bipolar cell types differ in their inventory of ion channels , 2006, Visual Neuroscience.

[25]  G. Tamás,et al.  Excitatory Effect of GABAergic Axo-Axonic Cells in Cortical Microcircuits , 2006, Science.

[26]  Ann Marie Craig,et al.  Synapse composition and organization following chronic activity blockade in cultured hippocampal neurons , 2005, The Journal of comparative neurology.

[27]  D. Lewis,et al.  Cortical inhibitory neurons and schizophrenia , 2005, Nature Reviews Neuroscience.

[28]  D. Kullmann,et al.  Presynaptic, extrasynaptic and axonal GABAA receptors in the CNS: where and why? , 2005, Progress in biophysics and molecular biology.

[29]  Botir T. Sagdullaev,et al.  GABAC receptor-mediated inhibition in the retina , 2004, Vision Research.

[30]  G. Knott,et al.  Experience and Activity-Dependent Maturation of Perisomatic GABAergic Innervation in Primary Visual Cortex during a Postnatal Critical Period , 2004, The Journal of Neuroscience.

[31]  Heinz Wässle,et al.  Parallel processing in the mammalian retina , 2004, Nature Reviews Neuroscience.

[32]  Kentaroh Takagaki,et al.  Expression of Distinct α Subunits of GABAA Receptor Regulates Inhibitory Synaptic Strength , 2004 .

[33]  L. Kochan,et al.  GABA and Schizophrenia: A Review of Basic Science and Clinical Studies , 2003, Journal of clinical psychopharmacology.

[34]  V. Murthy,et al.  Synaptic gain control and homeostasis , 2003, Current Opinion in Neurobiology.

[35]  D. Kullmann,et al.  GABAA Receptors at Hippocampal Mossy Fibers , 2003, Neuron.

[36]  L. Ballerini,et al.  Activity‐dependent modulation of GABAergic synapses in developing rat spinal networks in vitro , 2002, The European journal of neuroscience.

[37]  P. Lukasiewicz,et al.  Elimination of the ρ1 Subunit Abolishes GABACReceptor Expression and Alters Visual Processing in the Mouse Retina , 2002, The Journal of Neuroscience.

[38]  Mark C. W. van Rossum,et al.  Activity Deprivation Reduces Miniature IPSC Amplitude by Decreasing the Number of Postsynaptic GABAA Receptors Clustered at Neocortical Synapses , 2002, The Journal of Neuroscience.

[39]  A. Leslie Morrow,et al.  GABAA Receptor α1 Subunit Deletion Prevents Developmental Changes of Inhibitory Synaptic Currents in Cerebellar Neurons , 2001, The Journal of Neuroscience.

[40]  S. Bloomfield,et al.  Rod Vision: Pathways and Processing in the Mammalian Retina , 2001, Progress in Retinal and Eye Research.

[41]  F. Guillemot,et al.  Pax6 Is Required for the Multipotent State of Retinal Progenitor Cells , 2001, Cell.

[42]  H. Wässle,et al.  Immunocytochemical analysis of the mouse retina , 2000, The Journal of comparative neurology.

[43]  R. Wong,et al.  Distinct Ionotropic GABA Receptors Mediate Presynaptic and Postsynaptic Inhibition in Retinal Bipolar Cells , 2000, The Journal of Neuroscience.

[44]  E. Hartveit,et al.  Reciprocal synaptic interactions between rod bipolar cells and amacrine cells in the rat retina. , 1999, Journal of neurophysiology.

[45]  H. Wässle,et al.  GABAA and GABAC receptors on mammalian rod bipolar cells , 1998, The Journal of comparative neurology.

[46]  H. Wässle,et al.  Glycine and GABA receptors in the mammalian retina , 1998, Vision Research.

[47]  J. Kirsch,et al.  Glycine-receptor activation is required for receptor clustering in spinal neurons , 1998, Nature.

[48]  H. Wässle,et al.  Synaptic clustering of GABAC receptor ρ‐subunits in the rat retina , 1998, The European journal of neuroscience.

[49]  H. Wässle,et al.  Immunocytochemical localization of the GABAC receptor ρ subunits in the cat, goldfish, and chicken retina , 1997 .

[50]  P. Somogyi,et al.  Differential synaptic localization of two major gamma-aminobutyric acid type A receptor alpha subunits on hippocampal pyramidal cells. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[51]  H. Wässle,et al.  Immunocytochemical Localization of the GABACReceptor ρ Subunits in the Mammalian Retina , 1996, The Journal of Neuroscience.

[52]  P. Lukasiewicz GABAC receptors in the vertebrate retina , 1996, Molecular Neurobiology.

[53]  M. Sassoè-Pognetto,et al.  Selective clustering of GABA(A) and glycine receptors in the mammalian retina , 1996, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[54]  K. Gingrich,et al.  Dependence of the GABAA receptor gating kinetics on the alpha‐subunit isoform: implications for structure‐function relations and synaptic transmission. , 1995, The Journal of physiology.

[55]  J. Fritschy,et al.  GABAA‐receptor heterogeneity in the adult rat brain: Differential regional and cellular distribution of seven major subunits , 1995, The Journal of comparative neurology.

[56]  P. Lukasiewicz,et al.  Evidence for glycine modulation of excitatory synaptic inputs to retinal ganglion cells , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[57]  N. Vardi,et al.  Specific cell types in cat retina express different forms of glutamic acid decarboxylase , 1995, The Journal of comparative neurology.

[58]  A. Feigenspan,et al.  Differential pharmacology of GABAA and GABAC receptors on rat retinal bipolar cells. , 1994, European journal of pharmacology.

[59]  P. Sterling,et al.  Subcellular localization of GABAA receptor on bipolar cells in macaque and human retina , 1994, Vision Research.

[60]  H. Wässle,et al.  Electron microscopic analysis of the rod pathway of the rat retina , 1993, The Journal of comparative neurology.

[61]  M. Erlander,et al.  Two human glutamate decarboxylases, 65-kDa GAD and 67-kDa GAD, are each encoded by a single gene. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[62]  H. Kolb,et al.  A17: a broad-field amacrine cell in the rod system of the cat retina. , 1985, Journal of neurophysiology.

[63]  P Sterling,et al.  Microcircuitry of bipolar cells in cat retina , 1984, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[64]  F S Werblin,et al.  Transmission along and between rods in the tiger salamander retina. , 1978, The Journal of physiology.

[65]  B. Boycott,et al.  Organization of the primate retina: electron microscopy , 1966, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[66]  Josh L. Morgan,et al.  Axons and dendrites originate from neuroepithelial-like processes of retinal bipolar cells , 2006, Nature Neuroscience.

[67]  K. Takagaki,et al.  Expression of distinct alpha subunits of GABAA receptor regulates inhibitory synaptic strength. , 2004, Journal of neurophysiology.