A 6‐node triangular solid‐shell element for linear and nonlinear analysis

In this paper, we present an effective 6-node triangular solid-shell element (MITC-S6), with particular attention on shear locking and thickness locking. To alleviate shear locking, the assumed transverse strain field of the MITC3+ shell element is used while modifying the bending enhancement mechanism. Thickness locking is treated using the assumed and enhanced strain methods for thickness strain. Two independent enhancements of strains are applied: The in-plane and transverse shear strain fields are enhanced using the strain fields obtained from a bubble interpolation function for in-plane translations, and the thickness strain field is enhanced for linear variation in the thickness direction. The general three-dimensional material law is employed. The proposed element passes all the basic tests including zero-energy mode, patch, and isotropy tests. Excellent performance is observed in various linear and nonlinear benchmark tests, wherein its performance is compared with that of existing 6-node triangular and 8-node quadrilateral solid-shell elements. Copyright © 2016 John Wiley & Sons, Ltd.

[1]  K. Y. Sze,et al.  Popular benchmark problems for geometric nonlinear analysis of shells , 2004 .

[2]  Kyungho Yoon,et al.  Improving the MITC3 shell finite element by using the Hellinger-Reissner principle , 2012 .

[3]  H. Parisch A continuum‐based shell theory for non‐linear applications , 1995 .

[4]  Stefanie Reese,et al.  A reduced integration solid‐shell finite element based on the EAS and the ANS concept—Geometrically linear problems , 2009 .

[5]  Phill-Seung Lee,et al.  The quadratic MITC plate and MITC shell elements in plate bending , 2010, Adv. Eng. Softw..

[6]  T. Hughes,et al.  Finite Elements Based Upon Mindlin Plate Theory With Particular Reference to the Four-Node Bilinear Isoparametric Element , 1981 .

[7]  K. Y. Sze,et al.  A hybrid stress ANS solid‐shell element and its generalization for smart structure modelling. Part I—solid‐shell element formulation , 2000 .

[8]  Phill-Seung Lee,et al.  Insight into finite element shell discretizations by use of the basic shell mathematical model , 2005 .

[9]  K. Bathe,et al.  A continuum mechanics based four‐node shell element for general non‐linear analysis , 1984 .

[10]  E. Ramm,et al.  Three‐dimensional extension of non‐linear shell formulation based on the enhanced assumed strain concept , 1994 .

[11]  Phill-Seung Lee,et al.  Towards improving the MITC9 shell element , 2003 .

[12]  E. Stein,et al.  An assumed strain approach avoiding artificial thickness straining for a non‐linear 4‐node shell element , 1995 .

[13]  K. Bathe,et al.  The MITC4+ shell element and its performance , 2016 .

[14]  Ted Belytschko,et al.  Assumed strain stabilization procedure for the 9-node Lagrange shell element , 1989 .

[15]  Wing Kam Liu,et al.  Stress projection for membrane and shear locking in shell finite elements , 1985 .

[16]  D. Chapelle,et al.  The Finite Element Analysis of Shells - Fundamentals , 2003 .

[17]  Phill-Seung Lee,et al.  The MITC3+shell element and its performance , 2014 .

[18]  K. Y. Sze,et al.  A Six-Node Pentagonal Assumed Natural Strain Solid-Shell Element , 2001 .

[19]  J. C. Simo,et al.  A CLASS OF MIXED ASSUMED STRAIN METHODS AND THE METHOD OF INCOMPATIBLE MODES , 1990 .

[20]  Sung W. Lee,et al.  An assumed strain triangular curved solid shell element formulation for analysis of plates and shells undergoing finite rotations , 2001 .

[21]  Cv Clemens Verhoosel,et al.  An isogeometric continuum shell element for non-linear analysis , 2014 .

[22]  Chahngmin Cho,et al.  An efficient assumed strain element model with six DOF per node for geometrically non‐linear shells , 1995 .

[23]  E. Ramm,et al.  Shear deformable shell elements for large strains and rotations , 1997 .

[24]  Sven Klinkel,et al.  A robust non-linear solid shell element based on a mixed variational formulation , 2006 .

[25]  Fernando G. Flores,et al.  Development of a non-linear triangular prism solid-shell element using ANS and EAS techniques , 2013 .

[26]  Sven Klinkel,et al.  A continuum based three-dimensional shell element for laminated structures , 1999 .

[27]  R. Taylor,et al.  A generalized elastoplastic plate theory and its algorithmic implementation , 1994 .

[28]  Jong Hoon Kim,et al.  An assumed strain formulation of efficient solid triangular element for general shell analysis , 2000 .

[29]  Sung-Cheon Han,et al.  An 8-Node Shell Element for Nonlinear Analysis of Shells Using the Refined Combination of Membrane and Shear Interpolation Functions , 2013 .

[30]  Dominique Chapelle,et al.  The Finite Element Analysis of Shells - Fundamentals - Second Edition , 2011 .

[31]  Phill-Seung Lee,et al.  On the asymptotic behavior of shell structures and the evaluation in finite element solutions , 2002 .

[32]  A. J. Fricker,et al.  An improved three‐noded triangular element for plate bending , 1985 .

[33]  Richard H. Macneal,et al.  Derivation of element stiffness matrices by assumed strain distributions , 1982 .

[34]  J. N. Reddy,et al.  Tensor-based finite element formulation for geometrically nonlinear analysis of shell structures , 2007 .

[35]  K. Bathe Finite Element Procedures , 1995 .

[36]  Phill-Seung Lee,et al.  The MITC3+ shell element in geometric nonlinear analysis , 2015 .

[37]  R. Echter,et al.  A hierarchic family of isogeometric shell finite elements , 2013 .

[38]  K. Y. Sze,et al.  A quadratic assumed natural strain curved triangular shell element , 1999 .

[39]  R. Hauptmann,et al.  A SYSTEMATIC DEVELOPMENT OF 'SOLID-SHELL' ELEMENT FORMULATIONS FOR LINEAR AND NON-LINEAR ANALYSES EMPLOYING ONLY DISPLACEMENT DEGREES OF FREEDOM , 1998 .

[40]  M. Harnau,et al.  About linear and quadratic Solid-Shell elements at large deformations , 2002 .

[41]  K. Bathe,et al.  Measuring convergence of mixed finite element discretizations: an application to shell structures , 2003 .

[42]  K. Y. Sze,et al.  Curved quadratic triangular degenerated‐ and solid‐shell elements for geometric non‐linear analysis , 2003 .

[43]  K. Y. Sze,et al.  An eight‐node hybrid‐stress solid‐shell element for geometric non‐linear analysis of elastic shells , 2002 .

[44]  K. Bathe,et al.  Development of MITC isotropic triangular shell finite elements , 2004 .