VLT FORS2 COMPARATIVE TRANSMISSION SPECTROSCOPY: DETECTION OF Na IN THE ATMOSPHERE OF WASP-39b FROM THE GROUND

We present transmission spectroscopy of the warm Saturn-mass exoplanet WASP-39b made with the Very Large Telescope FOcal Reducer and Spectrograph (FORS2) across the wavelength range 411–810 nm. The transit depth is measured with a typical precision of 240 parts per million (ppm) in wavelength bins of 10 nm on a V = 12.1 mag star. We detect the sodium absorption feature (3.2σ) and find evidence of potassium. The ground-based transmission spectrum is consistent with Hubble Space Telescope (HST) optical spectroscopy, supporting the interpretation that WASP-39b has a largely clear atmosphere. Our results demonstrate the great potential of the recently upgraded FORS2 spectrograph for optical transmission spectroscopy, with which we obtained HST-quality light curves from the ground.

[1]  S. Dreizler,et al.  The GTC exoplanet transit spectroscopy survey. IV. Confirmation of the flat transmission spectrum of HAT-P-32b , 2016, 1604.06041.

[2]  T. Evans,et al.  DETECTION OF H2O AND EVIDENCE FOR TiO/VO IN AN ULTRA-HOT EXOPLANET ATMOSPHERE , 2016, 1604.02310.

[3]  Klaus G. Strassmeier,et al.  Transmission spectroscopy of HAT-P-32b with the LBT: confirmation of clouds/hazes in the planetary atmosphere , 2016, 1603.09136.

[4]  A. Jord'an,et al.  Limb darkening and exoplanets – II. Choosing the best law for optimal retrieval of transit parameters , 2016, 1601.05485.

[5]  A. Burrows,et al.  HST HOT-JUPITER TRANSMISSION SPECTRAL SURVEY: CLEAR SKIES FOR COOL SATURN WASP-39b , 2016, 1601.04761.

[6]  T. Evans,et al.  A continuum from clear to cloudy hot-Jupiter exoplanets without primordial water depletion , 2015, Nature.

[7]  Andreas Seifahrt,et al.  A Search for Water in the Atmosphere of HAT-P-26b Using LDSS-3C , 2015 .

[8]  I. Ribas,et al.  Transmission spectroscopy of the inflated exo-Saturn HAT-P-19b , 2015, 1506.05685.

[9]  N. Gibson,et al.  Regaining the FORS: optical ground-based transmission spectroscopy of the exoplanet WASP-19b with VLT+FORS2 , 2015, 1503.04155.

[10]  Tucson,et al.  HST hot-Jupiter transmission spectral survey: haze in the atmosphere of WASP-6b , 2014, 1411.4567.

[11]  S. Aigrain,et al.  HST hot-Jupiter transmission spectral survey: detection of potassium in WASP-31b along with a cloud deck and Rayleigh scattering , 2014, 1410.7611.

[12]  Andrea Chiavassa,et al.  The Stagger-grid: A grid of 3D stellar atmosphere models - IV. Limb darkening coefficients , 2014, 1403.3487.

[13]  Neale P. Gibson,et al.  Reliable inference of exoplanet light-curve parameters using deterministic and stochastic systematics models , 2014, 1409.5668.

[14]  J. Bean,et al.  DECIPHERING THE ATMOSPHERIC COMPOSITION OF WASP-12b: A COMPREHENSIVE ANALYSIS OF ITS DAYSIDE EMISSION , 2014, 1406.7567.

[15]  Jacob L. Bean,et al.  HUBBLE SPACE TELESCOPE NEAR-IR TRANSMISSION SPECTROSCOPY OF THE SUPER-EARTH HD 97658B , 2014, 1403.4602.

[16]  Drake Deming,et al.  Clouds in the atmosphere of the super-Earth exoplanet GJ 1214b , 2013, Nature.

[17]  S. Aigrain,et al.  Hubble Space Telescope hot Jupiter transmission spectral survey: a detection of Na and strong optical absorption in HAT-P-1b , 2013, 1310.0083.

[18]  Andrew Szentgyorgyi,et al.  A GROUND-BASED OPTICAL TRANSMISSION SPECTRUM OF WASP-6b , 2013, 1310.6048.

[19]  S. Aigrain,et al.  The optical transmission spectrum of the hot Jupiter HAT-P-32b: clouds explain the absence of broad spectral features? , 2013, 1309.6998.

[20]  Travis Barman,et al.  Warm ice giant GJ 3470b. I. A flat transmission spectrum indicates a hazy, low-methane, and/or metal-rich atmosphere , 2013, 1308.6580.

[21]  T. Evans,et al.  An HST optical-to-near-IR transmission spectrum of the hot Jupiter WASP-19b: detection of atmospheric water and likely absence of TiO , 2013, 1307.2083.

[22]  Andrew Szentgyorgyi,et al.  GROUND-BASED TRANSIT SPECTROSCOPY OF THE HOT-JUPITER WASP-19b IN THE NEAR-INFRARED , 2013, 1303.1094.

[23]  Mark Clampin,et al.  INFRARED TRANSMISSION SPECTROSCOPY OF THE EXOPLANETS HD 209458b AND XO-1b USING THE WIDE FIELD CAMERA-3 ON THE HUBBLE SPACE TELESCOPE , 2013, 1302.1141.

[24]  S. Aigrain,et al.  A Gemini ground-based transmission spectrum of WASP-29b: a featureless spectrum from 515 to 720 nm , 2012, 1210.7798.

[25]  D. Ehrenreich,et al.  GTC OSIRIS transiting exoplanet atmospheric survey: detection of sodium in XO-2b from differential long-slit spectroscopy† , 2012, 1208.4982.

[26]  J. D'esert,et al.  Temperature–pressure profile of the hot Jupiter HD 189733b from HST sodium observations: detection of upper atmospheric heating , 2012, 1202.4721.

[27]  S. Aigrain,et al.  A Gaussian process framework for modelling instrumental systematics: application to transmission spectroscopy , 2011, 1109.3251.

[28]  R. G. West,et al.  WASP-39b: a highly inflated Saturn-mass planet orbiting a late G-type star , 2011, 1102.1375.

[29]  Jacob L. Bean,et al.  A ground-based transmission spectrum of the super-Earth exoplanet GJ 1214b , 2010, Nature.

[30]  Joshua N. Winn,et al.  Transits and Occultations , 2010, 1001.2010.

[31]  David K. Sing,et al.  Stellar limb-darkening coefficients for CoRot and Kepler , 2009, 0912.2274.

[32]  A. P. Showman,et al.  TRANSMISSION SPECTRA OF THREE-DIMENSIONAL HOT JUPITER MODEL ATMOSPHERES , 2009, 0912.2350.

[33]  S. Albrecht,et al.  Ground-based detection of sodium in the transmission spectrum of exoplanet HD209458b , 2008, 0805.0789.

[34]  John Southworth,et al.  Homogeneous studies of transiting extrasolar planets – I. Light-curve analyses , 2008, 0802.3764.

[35]  A. D. Etangs,et al.  Rayleigh scattering in the transit spectrum of HD 189733b , 2008, 0802.3228.

[36]  Richard S. Freedman,et al.  A Unified Theory for the Atmospheres of the Hot and Very Hot Jupiters: Two Classes of Irradiated Atmospheres , 2007, 0710.2558.

[37]  C. Moutou,et al.  Detection of atmospheric haze on an extrasolar planet: the 0.55–1.05 μm transmission spectrum of HD 189733b with the Hubble Space Telescope , 2007, 0712.1374.

[38]  L. Koesterke,et al.  Sodium Absorption from the Exoplanetary Atmosphere of HD 189733b Detected in the Optical Transmission Spectrum , 2007, 0712.0761.

[39]  Frederic Pont,et al.  The effect of red noise on planetary transit detection , 2006, astro-ph/0608597.

[40]  E. Agol,et al.  Analytic Light Curves for Planetary Transit Searches , 2002, astro-ph/0210099.

[41]  R. Gilliland,et al.  Detection of an Extrasolar Planet Atmosphere , 2001, astro-ph/0111544.

[42]  Bernard Muschielok,et al.  Successful Commissioning of FORS1 - the First Optical Instrument on the VLT , 1998 .

[43]  H. Akaike A new look at the statistical model identification , 1974 .