Subcortical Facilitation of Behavioral Responses to Threat

[1]  A. Chauvin,et al.  Of guns and snakes: testing a modern threat superiority effect* , 2018, Cognition & emotion.

[2]  Marlene Behrmann,et al.  Numerosity representation is encoded in human subcortex , 2017, Proceedings of the National Academy of Sciences.

[3]  Carlos F. Silva,et al.  Beware the serpent: the advantage of ecologically-relevant stimuli in accessing visual awareness , 2017 .

[4]  H. Nishijo,et al.  Fast Detector/First Responder: Interactions between the Superior Colliculus-Pulvinar Pathway and Stimuli Relevant to Primates , 2017, Front. Neurosci..

[5]  A. Pegna,et al.  Naso-Temporal Asymmetries: Suppression of Emotional Faces in the Temporal Visual Hemifield , 2017, Front. Neurosci..

[6]  T. Hanakawa,et al.  The functional activity and effective connectivity of pulvinar are modulated by individual differences in threat-related attentional bias , 2016, Scientific Reports.

[7]  H. Koda,et al.  Japanese monkeys (Macaca fuscata) quickly detect snakes but not spiders: Evolutionary origins of fear-relevant animals. , 2016, Journal of comparative psychology.

[8]  C. Zelano,et al.  Human Amygdala Represents the Complete Spectrum of Subjective Valence , 2015, The Journal of Neuroscience.

[9]  D. Maurer,et al.  A comparison of spatial frequency tuning for judgments of eye gaze and facial identity , 2015, Vision Research.

[10]  Tamsin C. German,et al.  Spiders at the cocktail party: An ancestral threat that surmounts inattentional blindness. , 2015 .

[11]  Mark H. Johnson,et al.  Neuroscience and Biobehavioral Reviews the Two-process Theory of Face Processing: Modifications Based on Two Decades of Data from Infants and Adults , 2022 .

[12]  Rajendra A. Morey,et al.  Amygdala–Prefrontal Cortex Functional Connectivity During Threat-Induced Anxiety and Goal Distraction , 2015, Biological Psychiatry.

[13]  A. Öhman,et al.  The Hidden Snake in the Grass: Superior Detection of Snakes in Challenging Attentional Conditions , 2014, PloS one.

[14]  Quan Le Van Neurophysiological study for pulvinar role in rapid detection of snakes in monkeys , 2014 .

[15]  Marlene Behrmann,et al.  Monocular Advantage for Face Perception Implicates Subcortical Mechanisms in Adult Humans , 2014, Journal of Cognitive Neuroscience.

[16]  Jumpei Matsumoto,et al.  Pulvinar neurons reveal neurobiological evidence of past selection for rapid detection of snakes , 2013, Proceedings of the National Academy of Sciences.

[17]  Michael J. Penkunas,et al.  A comparison of rural and urban Indian children's visual detection of threatening and nonthreatening animals. , 2013, Developmental science.

[18]  F. Esteves,et al.  A glimpse of fear: Fast detection of threatening targets in visual search with brief stimulus durations. , 2013, PsyCh journal.

[19]  Alex Martin,et al.  Threat, domain-specificity and the human amygdala , 2012, Neuropsychologia.

[20]  S. Soares The Lurking Snake in the Grass: Interference of Snake Stimuli in Visually Taxing Conditions , 2012, Evolutionary Psychology.

[21]  R S Harwerth,et al.  Neuronal responses in visual area V2 (V2) of macaque monkeys with strabismic amblyopia. , 2011, Cerebral cortex.

[22]  K. Scherer,et al.  The Geneva affective picture database (GAPED): a new 730-picture database focusing on valence and normative significance , 2011, Behavior research methods.

[23]  M. Tamietto,et al.  Neural bases of the non-conscious perception of emotional signals , 2010, Nature Reviews Neuroscience.

[24]  Vanessa Lobue,et al.  And along came a spider: an attentional bias for the detection of spiders in young children and adults. , 2010, Journal of experimental child psychology.

[25]  J. Deloache,et al.  Superior detection of threat-relevant stimuli in infancy. , 2010, Developmental science.

[26]  A. Ohman,et al.  Some animal specific fears are more specific than others: Evidence from attention and emotion measures. , 2009, Behaviour research and therapy.

[27]  Fei-Fei Li,et al.  ImageNet: A large-scale hierarchical image database , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[28]  Nobuyuki Kawai,et al.  Rapid detection of snakes by Japanese monkeys (Macaca fuscata): an evolutionarily predisposed visual system. , 2009, Journal of comparative psychology.

[29]  Ralph Adolphs,et al.  Fear, faces, and the human amygdala , 2008, Current Opinion in Neurobiology.

[30]  D. Rakison,et al.  Do infants possess an evolved spider-detection mechanism? , 2008, Cognition.

[31]  Nikos K. Logothetis,et al.  Facial-Expression and Gaze-Selective Responses in the Monkey Amygdala , 2007, Current Biology.

[32]  Geraint Rees,et al.  Visual FMRI responses in human superior colliculus show a temporal-nasal asymmetry that is absent in lateral geniculate and visual cortex. , 2007, Journal of neurophysiology.

[33]  K M Gothard,et al.  Neural responses to facial expression and face identity in the monkey amygdala. , 2007, Journal of neurophysiology.

[34]  I. Blanchette Snakes, spiders, guns, and syringes: How specific are evolutionary constraints on the detection of threatening stimuli? , 2006, Quarterly journal of experimental psychology.

[35]  L. Isbell,et al.  Snakes as agents of evolutionary change in primate brains. , 2006, Journal of human evolution.

[36]  Joseph E LeDoux,et al.  Contributions of the Amygdala to Emotion Processing: From Animal Models to Human Behavior , 2005, Neuron.

[37]  Valérie Ouellette,et al.  Le Dominique Interactif , 2005 .

[38]  Denis Cousineau,et al.  Confidence intervals in within-subject designs: A simpler solution to Loftus and Masson's method , 2005 .

[39]  Robert Ward,et al.  Response to Visual Threat Following Damage to the Pulvinar , 2005, Current Biology.

[40]  P. Schyns,et al.  A mechanism for impaired fear recognition after amygdala damage , 2005, Nature.

[41]  H. Karnath,et al.  Using human brain lesions to infer function: a relic from a past era in the fMRI age? , 2004, Nature Reviews Neuroscience.

[42]  Alda González,et al.  The black widow spider genus Latrodectus (Araneae: Theridiidae): phylogeny, biogeography, and invasion history. , 2004, Molecular phylogenetics and evolution.

[43]  James M. Pflug,et al.  From a comb to a tree: phylogenetic relationships of the comb-footed spiders (Araneae, Theridiidae) inferred from nuclear and mitochondrial genes. , 2004, Molecular phylogenetics and evolution.

[44]  J. Duncan,et al.  Prefrontal cortical function and anxiety: controlling attention to threat-related stimuli , 2004, Nature Neuroscience.

[45]  Arne Öhman,et al.  The Malicious Serpent , 2003 .

[46]  D. Zald The human amygdala and the emotional evaluation of sensory stimuli , 2003, Brain Research Reviews.

[47]  N. Vidal COLUBROID SYSTEMATICS: EVIDENCE FOR AN EARLY APPEARANCE OF THE VENOM APPARATUS FOLLOWED BY EXTENSIVE EVOLUTIONARY TINKERING , 2002 .

[48]  A. Ohman,et al.  Emotion drives attention: detecting the snake in the grass. , 2001, Journal of experimental psychology. General.

[49]  S. Mineka,et al.  Fears, phobias, and preparedness: toward an evolved module of fear and fear learning. , 2001, Psychological review.

[50]  Hanna Damasio,et al.  Single-neuron responses to emotional visual stimuli recorded in human ventral prefrontal cortex , 2001, Nature Neuroscience.

[51]  Ravi S. Menon,et al.  Ocular dominance in human V1 demonstrated by functional magnetic resonance imaging. , 1997, Journal of neurophysiology.

[52]  F M de Monasterio,et al.  Arrangement of ocular dominance columns in human visual cortex. , 1990, Archives of ophthalmology.

[53]  A. Johnston,et al.  Spatial scaling of central and peripheral contrast-sensitivity functions. , 1987, Journal of the Optical Society of America. A, Optics and image science.

[54]  J. Eccles The emotional brain. , 1980, Bulletin et memoires de l'Academie royale de medecine de Belgique.

[55]  J. Thomas Normal and amblyopic contrast sensitivity function in central and peripheral retinas. , 1978, Investigative ophthalmology & visual science.

[56]  D. Hubel,et al.  Mode of termination of retinotectal fibers in macaque monkey: An autoradiographic study , 1975, Brain Research.

[57]  M E Wilson,et al.  Retino-tectal and cortico-tectal projections in Macaca mulatta. , 1970, Brain research.

[58]  C. Wheatstone XVIII. Contributions to the physiology of vision. —Part the first. On some remarkable, and hitherto unobserved, phenomena of binocular vision , 1962, Philosophical Transactions of the Royal Society of London.