$H_2$-Control of Continuous-Time Hidden Markov Jump Linear Systems

This technical note addresses the <inline-formula><tex-math notation="LaTeX">$H_2$</tex-math></inline-formula> -control problem for a continuous-time Markov Jump Linear System (MJLS) with partial information on the mode of operation. The jumps of the system depend on a continuous-time hidden Markov model (CT-HMM) where the hidden process represents the dynamics of the real system, while the emitted signal represents the information available to the controller. We start by analyzing the stochastic stability control problem with the goal to design a state feedback linear controller that stochastically stabilizes the closed-loop system, relying on the information from the detector. Two dual formulations, based on LMI problems, are derived as a solution for this problem. These results are then extended to the <inline-formula><tex-math notation="LaTeX">$H_2$</tex-math></inline-formula> guaranteed cost control problem. The technical note is concluded with a numerical example which illustrates the derived results.

[1]  P. Kiessler Stochastic Switching Systems: Analysis and Design , 2008 .

[2]  M. Mariton Detection delays, false alarm rates and the reconfiguration of control systems , 1989 .

[3]  Michel Benne,et al.  Active Fault Tolerant Control Strategy Applied to PEMFC Systems , 2017, 2017 IEEE Vehicle Power and Propulsion Conference (VPPC).

[4]  Alim P. C. Gonçalves,et al.  H∞ robust and networked control of discrete-time MJLS through LMIs , 2012, J. Frankl. Inst..

[5]  Johan Löfberg,et al.  YALMIP : a toolbox for modeling and optimization in MATLAB , 2004 .

[6]  R. Srichander,et al.  Stochastic stability analysis for continuous-time fault tolerant control systems , 1993 .

[7]  Dominique Sauter,et al.  Output feedback robust control of uncertain active fault tolerant control systems via convex analysis , 2008, Int. J. Control.

[8]  J. Bernussou,et al.  H/sub 2/ and H/sub /spl infin// robust output feedback control for continuous time polytopic systems , 2007 .

[9]  R. Elliott,et al.  Adaptive control of linear systems with Markov perturbations , 1998, IEEE Trans. Autom. Control..

[10]  Marcelo D. Fragoso,et al.  A Bounded Real Lemma for continuous-time linear systems with partial information on the Markovian jumping parameters , 2015, 2015 54th IEEE Conference on Decision and Control (CDC).

[11]  Peng Shi,et al.  A survey on Markovian jump systems: Modeling and design , 2015 .

[12]  Jan Lunze,et al.  Markov-parameter-based control reconfiguration by matching the I/O-behaviour of the plant , 2007, 2007 European Control Conference (ECC).

[13]  M. Fragoso,et al.  Continuous-Time Markov Jump Linear Systems , 2012 .

[14]  Alim P. C. Gonçalves,et al.  The H2-control for jump linear systems: cluster observations of the Markov state , 2002, Autom..

[15]  V. Dragan,et al.  Mathematical Methods in Robust Control of Linear Stochastic Systems , 2006 .

[16]  M. Mariton,et al.  Jump Linear Systems in Automatic Control , 1992 .

[17]  C. Desoer,et al.  Linear System Theory , 1963 .

[18]  Alim P. C. Gonçalves,et al.  Optimal H2 and H∞ Mode-Independent Control for Generalized Bernoulli Jump Systems , 2014 .

[19]  R. P. Marques,et al.  Discrete-Time Markov Jump Linear Systems , 2004, IEEE Transactions on Automatic Control.

[20]  W. Marsden I and J , 2012 .

[21]  José Claudio Geromel,et al.  Analysis and Synthesis of Robust Control Systems Using Linear Parameter Dependent Lyapunov Functions , 2006, IEEE Transactions on Automatic Control.

[22]  S. Eddy Hidden Markov models. , 1996, Current opinion in structural biology.

[23]  Marcelo D. Fragoso,et al.  A Detector-Based Approach for the $H_{2} $ Control of Markov Jump Linear Systems With Partial Information , 2015, IEEE Transactions on Automatic Control.