Communication: Probing anomalous diffusion in frequency space.

Anomalous diffusion processes are usually detected by analyzing the time-dependent mean square displacement of the diffusing particles. The latter evolves asymptotically as W(t) ∼ 2Dαt(α), where Dα is the fractional diffusion constant and 0 < α < 2. In this article we show that both Dα and α can also be extracted from the low-frequency Fourier spectrum of the corresponding velocity autocorrelation function. This offers a simple method for the interpretation of quasielastic neutron scattering spectra from complex (bio)molecular systems, in which subdiffusive transport is frequently encountered. The approach is illustrated and validated by analyzing molecular dynamics simulations of molecular diffusion in a lipid POPC bilayer.

[1]  Andrey G. Cherstvy,et al.  Anomalous diffusion models and their properties: non-stationarity, non-ergodicity, and ageing at the centenary of single particle tracking. , 2014, Physical chemistry chemical physics : PCCP.

[2]  G. Kneller,et al.  Anomalous lateral diffusion in lipid bilayers observed by molecular dynamics simulations with atomistic and coarse-grained force fields , 2014 .

[3]  E. Lutz,et al.  Scaling Green-Kubo Relation and Application to Three Aging Systems , 2013, 1310.5405.

[4]  R. Metzler,et al.  Anomalous diffusion of phospholipids and cholesterols in a lipid bilayer and its origins. , 2012, Physical review letters.

[5]  Igor M. Sokolov,et al.  Models of anomalous diffusion in crowded environments , 2012 .

[6]  G. Kneller,et al.  Communication: consistent picture of lateral subdiffusion in lipid bilayers: molecular dynamics simulation and exact results. , 2011, The Journal of chemical physics.

[7]  G. Kneller,et al.  Generalized Kubo relations and conditions for anomalous diffusion: physical insights from a mathematical theorem. , 2011, The Journal of chemical physics.

[8]  Jhuma Das,et al.  Subdiffusion and lateral diffusion coefficient of lipid atoms and molecules in phospholipid bilayers. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[9]  D. van der Spoel,et al.  GROMACS 4:  Algorithms for Highly Efficient, Load-Balanced, and Scalable Molecular Simulation. , 2008, Journal of chemical theory and computation.

[10]  D. Tieleman,et al.  The MARTINI force field: coarse grained model for biomolecular simulations. , 2007, The journal of physical chemistry. B.

[11]  A. Einstein Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen [AdP 17, 549 (1905)] , 2005, Annalen der Physik.

[12]  A. Mark,et al.  Coarse grained model for semiquantitative lipid simulations , 2004 .

[13]  J. Korlach,et al.  Fluorescence correlation spectroscopy with single-molecule sensitivity on cell and model membranes. , 1999, Cytometry.

[14]  W. L. Jorgensen,et al.  Development and Testing of the OPLS All-Atom Force Field on Conformational Energetics and Properties of Organic Liquids , 1996 .

[15]  Montfrooij,et al.  Velocity autocorrelation function of simple dense fluids from neutron scattering experiments. , 1989, Physical review. A, General physics.

[16]  W. L. Jorgensen,et al.  The OPLS [optimized potentials for liquid simulations] potential functions for proteins, energy minimizations for crystals of cyclic peptides and crambin. , 1988, Journal of the American Chemical Society.

[17]  R. Kubo Statistical-Mechanical Theory of Irreversible Processes : I. General Theory and Simple Applications to Magnetic and Conduction Problems , 1957 .

[18]  P. Schwille,et al.  Fluorescence correlation spectroscopy in membrane structure elucidation. , 2009, Biochimica et biophysica acta.

[19]  M. Bellac,et al.  Nonequilibrium statistical mechanics , 2007, Physics Subject Headings (PhySH).

[20]  S. Haykin,et al.  Adaptive Filter Theory , 1986 .

[21]  Athanasios Papoulis Probability, Random Variables and Stochastic Processes , 1965 .

[22]  M. Smoluchowski Zur kinetischen Theorie der Brownschen Molekularbewegung und der Suspensionen , 1906 .