Growth of solutions of certain higher order linear differential equations

The article is devoted to investigating the growth of solutions of certain higher order linear differential equations, extending some of the preceding results in the second-order case.

[1]  Chung-Chun Yang,et al.  Uniqueness Theory of Meromorphic Functions , 2004 .

[2]  Jeong-Heon Kim,et al.  Maximum modulus, characteristic, deficiency and growth of solutions of second order linear differential equations , 2001 .

[3]  Jun Wang,et al.  Growth of solutions of second order linear differential equations , 2008 .

[4]  Ilpo Laine,et al.  Nevanlinna Theory and Complex Differential Equations , 1992 .

[5]  J. Miles,et al.  ON THE GROWTH OF SOLUTIONS OF /' + gf + hf = 0 , 2010 .

[6]  G. G. Gundersen,et al.  Estimates for the Logarithmic Derivative of a Meromorphic Function, Plus Similar Estimates , 1988 .

[7]  G. G. Gundersen,et al.  Finite order solutions of second order linear differential equations , 1988 .

[8]  L. G. A. Bernal ON growth K-order of solutions of a complex homogeneous linear differential equation , 1987 .

[9]  L. Volkmann,et al.  Einführung in die Theorie der ganzen und meromorphen Funktionen mit Anwendungen auf Differentialgleichungen , 1985 .

[10]  Mitsuru Ozawa On a solution of $w^{\prime\prime}+e^{-z}w^{\prime}+(az+b)w=0$ , 1980 .

[11]  W. Hayman The Local Growth of Power Series: A Survey of the Wiman-Valiron Method , 1974, Canadian Mathematical Bulletin.

[12]  W. Fuchs Proof of a conjecture of G. Pólya concerning gap series , 1963 .

[13]  A. Edrei,et al.  The deficiencies of meromorphic functions of order less than one , 1960 .

[14]  R. Redheffer The maximum modulus , 1958 .

[15]  Shizuo Kakutani,et al.  On Meromorphic Functions. I , 1935 .