Optimalisasi Parameter dengan Cross Validation dan Neural Back-propagation Pada Model Prediksi Pertumbuhan Industri Mikro dan Kecil

It is important for us to predict what will happen in future and to reduce uncertainty. Various analyzes are therefore necessary in order to optimize or improve the prediction results by several methods. The objective of this research is to analyze predictive results by optimizing the training and testing by means of cross validating parameters on the growth of micro and small-scale production in Indonesia through the exactness of the return-propagative method. The method of reproduction is used. These results are compared with results of backpropagation during training and testing without optimisation of the same architectural model. The dataset is based on the growth in production in micro and small businesses by province from the Central Statistical Agency(BPS). There were 34 records in which data from 2015-2019 for growth of production were collected. The results with optimisation have surpassed without optimisation the back propagation model by looking at RMSE, in which the best RMSE in the 3-2-1 architectural model was obtained and the side type is mixed sampling. The obtained RMSE value is 0.1526, or a difference between the best background architectural model, 3-2-1 and 0.0034. (0.157). The results of this model were 94 percent.

[1]  Yopi Andry Lesnussa,et al.  APPLICATION OF BACKPROPAGATION NEURAL NETWORKS IN PREDICTING RAINFALL DATA IN AMBON CITY , 2018, International Journal of Artificial Intelligence Research.

[2]  Penerapan Metode K-Means Dan C4.5 Untuk Prediksi Penderita Diabetes , 2020 .

[3]  Budiharjo,et al.  Predicting Tuition Fee Payment Problem using Backpropagation Neural Network Model , 2018 .

[4]  Agus Perdana Windarto,et al.  Implementasi JST pada Prediksi Total Laba Rugi Komprehensif Bank Umum dan Konvensional dengan Backpropagation , 2018, Jurnal Teknologi Informasi dan Ilmu Komputer.

[5]  Y. Yuhandri,et al.  Algoritma Backpropagation Prediksi Harga Komoditi terhadap Karakteristik Konsumen Produk Kopi Lokal Nasional , 2020 .

[6]  Hari Wibawanto,et al.  Implementasi Metode Backpropogation dengan Inisialisasi Bobot Nguyen Widrow untuk Peramalan Harga Saham , 2019, Jurnal Teknologi Informasi dan Ilmu Komputer.

[7]  Bayu Febriadi,et al.  Bipolar function in backpropagation algorithm in predicting Indonesia’s coal exports by major destination countries , 2018, IOP Conference Series: Materials Science and Engineering.

[8]  Anjar Wanto,et al.  Bagian 2: Model Arsitektur Neural Network Dengan Kombinasi K-Medoids dan Backpropagation pada kasus Pandemi Covid-19 di Indonesia , 2020 .

[9]  A. Ma’ruf,et al.  PERTUMBUHAN EKONOMI INDONESIA: Determinan dan Prospeknya , 2008 .

[10]  Anjar Wanto,et al.  Optimasi Prediksi Dengan Algoritma Backpropagation Dan Conjugate Gradient Beale-Powell Restarts , 2018 .