Adaptive finite element procedures for linear and non‐linear dynamics

This paper discusses implementation and adaptivity of the Discontinuous Galerkin (DG) finite element method as applied to linear and non-linear structural dynamic problems. By the DG method, both displacements and velocities are approximated as piecewise bilinear functions in space and time and may be discontinuous at the discrete time levels. Both implicit and explicit iterative algorithms for solving the resulted system of coupled equations are derived. They are third-order accurate and, while the implicit procedure is unconditionally stable, the explicit one is conditionally stable. An h-adaptive procedure based on the Zienkiewicz–Zhu error estimate using the SPR technique is applied. Numerical examples are presented to show the suitability of the DG method for both linear and non-linear structural dynamic analysis. Copyright © 1999 John Wiley & Sons, Ltd.

[1]  David R. Owen,et al.  Transfer operators for evolving meshes in small strain elasto-placticity , 1996 .

[2]  Nils-Erik Wiberg,et al.  Error estimation and adaptive procedures based on superconvergent patch recovery (SPR) techniques , 1997 .

[3]  J. Z. Zhu,et al.  The superconvergent patch recovery and a posteriori error estimates. Part 1: The recovery technique , 1992 .

[4]  T. Hughes,et al.  Space-time finite element methods for elastodynamics: formulations and error estimates , 1988 .

[5]  Nils-Erik Wiberg,et al.  Patch recovery based on superconvergent derivatives and equilibrium , 1993 .

[6]  Nils-Erik Wiberg,et al.  Formulation and solution of hierarchical finite element equations , 1988 .

[7]  Thomas J. R. Hughes,et al.  Space-time finite element methods for second-order hyperbolic equations , 1990 .

[8]  O. C. Zienkiewicz,et al.  A simple error estimator and adaptive procedure for practical engineerng analysis , 1987 .

[9]  Xiangdong Li Adaptive Finite Element Procedures in Structural Dynamics , 1996 .

[10]  Claes Johnson,et al.  Discontinuous Galerkin finite element methods for second order hyperbolic problems , 1993 .

[11]  Nils-Erik Wiberg,et al.  Improved element stresses for node and element patches using superconvergent patch recovery , 1995 .

[12]  Nils-Erik Wiberg,et al.  Implementation and adaptivity of a space-time finite element method for structural dynamics , 1998 .

[13]  David R. Owen,et al.  On error estimates and adaptivity in elastoplastic solids: Applications to the numerical simulation of strain localization in classical and Cosserat continua , 1994 .

[14]  P. Ladevèze,et al.  ERROR ESTIMATION AND ADAPTIVITY IN ELASTOPLASTICITY , 1996 .

[15]  T. Belytschko,et al.  H-adaptive finite element methods for dynamic problems, with emphasis on localization , 1993 .

[16]  C. Rajakumar,et al.  Examination of flux projection-type error estimators in nonlinear finite element analysis , 1995 .

[17]  F. B. Ellerby,et al.  Numerical solutions of partial differential equations by the finite element method , by C. Johnson. Pp 278. £40 (hardback), £15 (paperback). 1988. ISBN 0-521-34514-6, 34758-0 (Cambridge University Press) , 1989, The Mathematical Gazette.

[18]  Claes Johnson,et al.  Adaptive finite element methods in computational mechanics , 1992 .

[19]  Donald A. French,et al.  A space-time finite element method for the wave equation* , 1993 .

[20]  Nils-Erik Wiberg,et al.  STRUCTURAL DYNAMIC ANALYSIS BY A TIME‐DISCONTINUOUS GALERKIN FINITE ELEMENT METHOD , 1996 .

[21]  Klaus-Jürgen Bathe,et al.  Error indicators and adaptive remeshing in large deformation finite element analysis , 1994 .

[22]  J. Z. Zhu,et al.  The superconvergent patch recovery and a posteriori error estimates. Part 2: Error estimates and adaptivity , 1992 .

[23]  G. Hulbert Time finite element methods for structural dynamics , 1992 .