Logic on Words

This dialog between Quisani, Yuri Gurevich's imaginary student, and the author, was published in the "Logic in Computer Science Column" of the EATCS Bulletin. It is first addressed to logicians. This dialog is an occasion to present the connections between Buchi's sequential calculus and the theory of finite automata. In particular, the essential role of first order formulae is emphasized. The quantifier hierarchies on these formulae are an occasion to present open problems.

[1]  Johan Anthory Willem Kamp,et al.  Tense logic and the theory of linear order , 1968 .

[2]  Saharon Shelah,et al.  On the temporal analysis of fairness , 1980, POPL '80.

[3]  Thomas Wilke,et al.  An Algebraic Theory for Regular Languages of Finite and Infinite Words , 1993, Int. J. Algebra Comput..

[4]  Jean-Pierre Pécuchet Etude Syntaxique des Parties Reconnaissables de Mots Infinis , 1986, ICALP.

[5]  Dominique Perrin,et al.  Varietes de Semigroupes et Mots Infinis , 1983, ICALP.

[6]  Thomas Wilke,et al.  Locally Threshold Testable Languages of Infinite Words , 1993, STACS.

[7]  Larry J. Stockmeyer,et al.  The Polynomial-Time Hierarchy , 1976, Theor. Comput. Sci..

[8]  Joëlle Cohen-Chesnot,et al.  On the Expressive Power of Temporal Logic for Infinite Words , 1991, Theor. Comput. Sci..

[9]  Dominique Perrin,et al.  Finite Automata , 1958, Philosophy.

[10]  André Arnold Topological Characterizations of Infinite Behaviours of Transition Systems , 1983, ICALP.

[11]  Danièle Beauquier,et al.  Factors of Words , 1989, ICALP.

[12]  Dominique Perrin,et al.  Recent Results on Automata and Infinite Words , 1984, MFCS.

[13]  Jean-Eric Pin,et al.  A variety theorem without complementation , 1995 .

[14]  S. Sieber On a decision method in restricted second-order arithmetic , 1960 .

[15]  Jacques Stern,et al.  Complexity of Some Problems from the Theory of Automata , 1985, Inf. Control..

[16]  Francine Blanchet-Sadri,et al.  Some Logical Characterizations of the Dot-Depth Hierarchy and Applications , 1995, J. Comput. Syst. Sci..

[17]  Francine Blanchet-Sadri,et al.  Games, Equations and Dot-Depth Two Monoids , 1992, Discret. Appl. Math..

[18]  Howard Straubing,et al.  Characterizations of regular languages in low level complexity classes , 2001, Bull. EATCS.

[19]  Marcel Paul Schützenberger,et al.  On Finite Monoids Having Only Trivial Subgroups , 1965, Inf. Control..

[20]  Dominique Perrin,et al.  First-Order Logic and Star-Free Sets , 1986, J. Comput. Syst. Sci..

[21]  Howard Straubing Semigroups and Languages of Dot-Depth 2 , 1986, ICALP.

[22]  R. McNaughton,et al.  Counter-Free Automata , 1971 .

[23]  Howard Straubing,et al.  Monoids of upper-triangular matrices , 1981 .

[24]  Howard Straubing Finite Automata, Formal Logic, and Circuit Complexity , 1994, Progress in Theoretical Computer Science.

[25]  Dominique Perrin,et al.  On the Expressive Power of Temporal Logic , 1993, J. Comput. Syst. Sci..

[26]  Jean-Éric Pin,et al.  The Expressive Power of Existential First Order Sentences of Büchi's Sequential Calculus , 1996, ICALP.

[27]  Denis Thérien,et al.  Graph congruences and wreath products , 1985 .

[28]  Danièle Beauquier,et al.  Languages and Scanners , 1991, Theor. Comput. Sci..

[29]  Imre Simon,et al.  The Product of Rational Languages , 1993, ICALP.

[30]  Richard E. Ladner,et al.  Application of Model Theoretic Games to Discrete Linear Orders and Finite Automata , 1977, Inf. Control..

[31]  Dung T. Huynh,et al.  Finite-Automaton Aperiodicity is PSPACE-Complete , 1991, Theor. Comput. Sci..

[32]  Imre Simon,et al.  Piecewise testable events , 1975, Automata Theory and Formal Languages.

[33]  Wolfgang Thomas,et al.  Automata on Infinite Objects , 1991, Handbook of Theoretical Computer Science, Volume B: Formal Models and Sematics.

[34]  Howard Straubing,et al.  Semigroups and Languages of Dot-Depth Two , 1988, Theor. Comput. Sci..

[35]  Francine Blanchet-Sadri,et al.  Games, equations and the dot-depth hierarchy , 1989 .

[36]  Howard Straubing,et al.  regular Languages Defined with Generalized Quantifiers , 1988, ICALP.

[37]  J. Büchi Weak Second‐Order Arithmetic and Finite Automata , 1960 .

[38]  Wolfgang Thomas,et al.  Classifying Regular Events in Symbolic Logic , 1982, J. Comput. Syst. Sci..

[39]  J. Van Leeuwen,et al.  Handbook of theoretical computer science - Part A: Algorithms and complexity; Part B: Formal models and semantics , 1990 .