Performance of satellite-based ocean forecasting (SOFT) systems: A study in the Adriatic Sea

Abstract Continuous monitoring by satellites of the ocean spatiotemporal variability allows empirical forecasting of satellite-observed data. The forecast of satellite data is achieved in three major phases: decomposition of the spatiotemporal variability of the satellite data, noise reduction of the encoded space, and time variability and the prediction, by a nonlinear forecasting technique, of the time variability. Different techniques can be employed in each processing phase. Specifically, decomposition can be carried out using spatial or temporal variance EOF decomposition. With spatial variance EOFs, performance of the empirical forecasting is associated with the predictability of the dynamics of spatial structures with strong spatial gradients (fronts, eddies, etc. . . .). Conversely, if temporal variance decomposition is employed, the success of the empirical prediction system will be related to features with strong temporal variability. Both approaches have been employed to empirically forecast sa...

[1]  Cristóbal López,et al.  Forecasting the SST Space‐time variability of the Alboran Sea with genetic algorithms , 2000 .

[2]  Joaquín Tintoré,et al.  DARWIN: An evolutionary program for nonlinear modeling of chaotic time series , 2001 .

[3]  Michael Ghil,et al.  Adaptive filtering and maximum entropy spectra with application to changes in atmospheric angular momentum , 1991 .

[4]  G. P. King,et al.  Extracting qualitative dynamics from experimental data , 1986 .

[5]  Kathryn A. Kelly,et al.  The influence of winds and topography on the sea surface temperature patterns over the northern California slope , 1985 .

[6]  George G. Szpiro Forecasting chaotic time series with genetic algorithms , 1997 .

[7]  P. Grassberger,et al.  Measuring the Strangeness of Strange Attractors , 1983 .

[8]  Benyang Tang Periods of Linear Development of the ENSO Cycle and POP Forecast Experiments , 1995 .

[9]  Michel Rixen,et al.  Results on SSH neural network forecasting in the Mediterranean Sea , 2002, SPIE Remote Sensing.

[10]  J. Cole,et al.  Sea surface temperature variability in the northern Benguela upwelling system, and implications for fisheries research , 2000 .

[11]  Gene H. Golub,et al.  Matrix computations , 1983 .

[12]  Mark R. Abbott,et al.  Tidal and atmospheric forcing of the upper ocean in the Gulf of California: 1. Sea surface temperature variability , 1991 .

[13]  T. Barnett,et al.  Long-Lead Seasonal ForecastsWhere Do We Stand? , 1994 .

[14]  Aniello Russo,et al.  The Adriatic Sea General Circulation. Part II: Baroclinic Circulation Structure , 1997 .

[15]  A. Robinson,et al.  Data Assimilation via Error Subspace Statistical Estimation.Part I: Theory and Schemes , 1999, Monthly Weather Review.

[16]  Malik Magdon-Ismail,et al.  Financial markets: very noisy information processing , 1998 .

[17]  G. Borzelli,et al.  Autocorrelation Scales of the SST Distribution and Water Masses Stratification in the Channel of Sicily , 1999 .

[18]  G. Borzelli,et al.  Empirical Orthogonal Function Analysis of SST Image Series: A Physical Interpretation , 1999 .

[19]  Jordi Font,et al.  Observations on the Circulation in the Alboran Sea Using ERS1 Altimetry and Sea Surface Temperature Data , 1996 .

[20]  R. Preisendorfer,et al.  Principal Component Analysis in Meteorology and Oceanography , 1988 .

[21]  C López,et al.  Forecasting confined spatiotemporal chaos with genetic algorithms. , 2000, Physical review letters.

[22]  Anastasios A. Tsonis,et al.  Singular spectrum analysis , 1996 .

[23]  Gary S. E. Lagerloef,et al.  Empirical orthogonal function analysis of advanced very high resolution radiometer surface temperature patterns in Santa Barbara Channel , 1988 .

[24]  Mirko Orlić,et al.  The currents and circulation of the Adriatic Sea , 1992 .

[25]  J. Elsner,et al.  Singular Spectrum Analysis: A New Tool in Time Series Analysis , 1996 .

[26]  Alejandro Orfila,et al.  Satellite based forecasting of sea surface temperature in the Tuscan Archipelago , 2003 .

[27]  R. K. Dahule,et al.  Obtaining functional form for chaotic time series evolution using genetic algorithm. , 1999, Chaos.

[28]  J. Elsner,et al.  Nonlinear prediction as a way of distinguishing chaos from random fractal sequences , 1992, Nature.

[29]  C. Wunsch The Ocean Circulation Inverse Problem , 1996 .

[30]  Kathryn A. Kelly Comment on “Empirical orthogonal function analysis of advanced very high resolution radiometer surface temperature patterns in Santa Barbara Channel” by G. S. E. Lagerloef and R. L. Bernstein , 1988 .

[31]  J. D. Farmer,et al.  Nonlinear modeling of chaotic time series: Theory and applications , 1990 .

[32]  M. Gačić,et al.  Analysis of the seasonal and interannual variability of the sea surface temperature field in the Adriatic Sea from AVHRR data (1984–1992) , 1997 .

[33]  John J. Grefenstette,et al.  Genetic Algorithms for Tracking Changing Environments , 1993, ICGA.