Nonexistence Theorems on Perfect Lee Codes over Large Alphabets

Perfect codes in the Lee metric are proved to be impossible for ( 3 ⩽ n ⩽ 5 ; e ⩾ n − 1 ; q ⩾ 2 e + 1 ) and ( n ⩾ 6 ; e ⩾ 1 2 n 2 − 3 4 2 − 1 2 ; q ⩾ 2 e + 1 ) . .