Dissecting the region around IceCube-170922A: the blazar TXS 0506+056 as the first cosmic neutrino source

We present the dissection in space, time, and energy of the region around the IceCube-170922A neutrino alert. This study is motivated by: (1) the first association between a neutrino alert and a blazar in a flaring state, TXS 0506+056; (2) the evidence of a neutrino flaring activity during 2014 - 2015 from the same direction; (3) the lack of an accompanying simultaneous $\gamma$-ray enhancement from the same counterpart; (4) the contrasting flaring activity of a neighbouring bright $\gamma$-ray source, the blazar PKS 0502+049, during 2014 - 2015. Our study makes use of multi-wavelength archival data accessed through Open Universe tools and includes a new analysis of Fermi-LAT data. We find that PKS 0502+049 contaminates the $\gamma$-ray emission region at low energies but TXS 0506+056 dominates the sky above a few GeV. TXS 0506+056, which is a very strong (top percent) radio and $\gamma$-ray source, is in a high $\gamma$-ray state during the neutrino alert but in a low though hard $\gamma$-ray state in coincidence with the neutrino flare. Both states can be reconciled with the energy associated with the neutrino emission and, in particular during the low/hard state, there is evidence that TXS 0506+056 has undergone a hadronic flare with very important implications for blazar modelling. All multi-messenger diagnostics reported here support a single coherent picture in which TXS 0506+056, a very high energy $\gamma$-ray blazar, is the only counterpart of all the neutrino emissions in the region and therefore the most plausible first non-stellar neutrino and, hence, cosmic ray source.

[1]  P. Gregory,et al.  The 87GB catalog of radio sources covering delta between O and + 75 deg at 4. 85 GHz , 1991 .

[2]  B. Arsioli,et al.  2WHSP: A multi-frequency selected catalogue of high energy and very high energy γ-ray blazars and blazar candidates , 2017 .

[3]  S. Coenders,et al.  Connecting blazars with ultrahigh-energy cosmic rays and astrophysical neutrinos , 2016, 1611.06022.

[4]  Paolo Padovani,et al.  Photohadronic origin of $\boldsymbol {\gamma }$-ray BL Lac emission: implications for IceCube neutrinos , 2015, 1501.07115.

[5]  M. Ahlers,et al.  High-energy cosmic neutrino puzzle: a review , 2015, Reports on progress in physics. Physical Society.

[6]  A. Treves,et al.  The Redshift of the BL Lac Object TXS 0506+056 , 2018, 1802.01939.

[7]  J. C. D'iaz-V'elez,et al.  THE CONTRIBUTION OF FERMI-2LAC BLAZARS TO DIFFUSE TEV–PEV NEUTRINO FLUX , 2016, 1611.03874.

[8]  D. L. Bertsch,et al.  The Likelihood Analysis of EGRET Data , 1996 .

[9]  G. Ghisellini,et al.  High-energy cosmic neutrinos from spine-sheath BL Lac jets , 2014, 1411.2783.

[10]  P. Padovani,et al.  UNIFIED SCHEMES FOR RADIO-LOUD ACTIVE GALACTIC NUCLEI , 1995, astro-ph/9506063.

[11]  M. C. Cooper,et al.  Extragalactic background light inferred from AEGIS galaxy-SED-type fractions , 2010, 1103.4534.

[12]  P. O. Hulth,et al.  Evidence for Astrophysical Muon Neutrinos from the Northern Sky with IceCube. , 2015, Physical review letters.

[13]  BL Lac objects in the synchrotron proton blazar model , 2002, astro-ph/0206164.

[14]  Yasuyuki T. Tanaka,et al.  THE THIRD CATALOG OF ACTIVE GALACTIC NUCLEI DETECTED BY THE FERMI LARGE AREA TELESCOPE , 2015, 1501.06054.

[15]  Felix Aharonian,et al.  Energy spectra of gamma rays, electrons, and neutrinos produced at proton-proton interactions in the very high energy regime , 2006 .

[16]  L. Cadonati,et al.  Neutrinos from the primary proton–proton fusion process in the Sun , 2014, Nature.

[17]  L. A. Antonelli,et al.  AGILE Detection of a Candidate Gamma-Ray Precursor to the ICECUBE-160731 Neutrino Event , 2017, 1707.08599.

[18]  Paolo Giommi,et al.  A simplified view of blazars: contribution to the X-ray and γ-ray extragalactic backgrounds , 2015, 1504.01978.

[19]  K. Grainge,et al.  BLAZARS IN THE FERMI ERA: THE OVRO 40 m TELESCOPE MONITORING PROGRAM , 2010, 1011.3111.

[20]  The Event Horizon Telescope Collaboration,et al.  Pierre Auger Observatory and Telescope Array: Joint Contributions to the 35th International Cosmic Ray Conference (ICRC 2017) , 2018, 1801.01018.

[21]  M. G. Berisso,et al.  The Latin American Giant Observatory: Contributions to the 34th International Cosmic Ray Conference (ICRC 2015) , 2016, 1605.02151.

[22]  P. O. Hulth,et al.  The IceCube Neutrino Observatory - Contributions to ICRC 2015 Part II: Atmospheric and Astrophysical Diffuse Neutrino Searches of All Flavors , 2015, 1510.05223.

[23]  K. Mannheim High-energy neutrinos from extragalactic jets , 1995 .

[24]  P. Giommi,et al.  A simplified view of blazars: clearing the fog around long‐standing selection effects , 2011, 1110.4706.

[25]  E. Greisen,et al.  The NRAO VLA Sky Survey , 1996 .

[26]  T Meures,et al.  Observation of High-Energy Astrophysical Neutrinos in Three Years of IceCube Data , 2014, 1405.5303.

[27]  P. Giommi,et al.  A simplified view of blazars: the very high energy γ-ray vision , 2014, 1410.0497.

[28]  B. Arsioli,et al.  2WHSP: A multi-frequency selected catalogue of high energy and very high energy γ-ray blazars and blazar candidates , 2016, 1609.05808.

[29]  Alan A. Wells,et al.  The Swift Gamma-Ray Burst Mission , 2004, astro-ph/0405233.

[30]  Ronnie Killough,et al.  The Swift Ultra-Violet/Optical Telescope , 2001 .

[31]  J. P. Rodrigues,et al.  Evidence for High-Energy Extraterrestrial Neutrinos at the IceCube Detector , 2013, Science.

[32]  P. Padovani,et al.  Are both BL Lacs and pulsar wind nebulae the astrophysical counterparts of IceCube neutrino events , 2014, 1406.0376.

[33]  P. O. Hulth,et al.  First observation of PeV-energy neutrinos with IceCube. , 2013, Physical review letters.

[34]  G. Ghisellini,et al.  The Fermi blazar sequence , 2017, 1702.02571.

[35]  J. P. Barron,et al.  The IceCube Neutrino Observatory - Contributions to ICRC 2017 Part II: Properties of the Atmospheric and Astrophysical Neutrino Flux , 2017, 1710.01191.

[36]  Astrophysics,et al.  The All-Sky Automated Survey for Supernovae (ASAS-SN) Light Curve Server v1.0 , 2017, 1706.07060.

[37]  B. Lott,et al.  An adaptive-binning method for generating constant-uncertainty/constant-significance light curves with Fermi-LAT data , 2012, 1201.4851.

[38]  J. P. Barron,et al.  The IceCube Neutrino Observatory - Contributions to ICRC 2017 Part I: Searches for the Sources of Astrophysical Neutrinos , 2017, 1710.01179.

[39]  P. Giommi,et al.  Active galactic nuclei: what’s in a name? , 2017, The Astronomy and Astrophysics Review.

[40]  J. Chiang,et al.  THE LARGE AREA TELESCOPE ON THE FERMI GAMMA-RAY SPACE TELESCOPE MISSION , 2009, 0902.1089.

[41]  G. Merino,et al.  OBSERVATION AND CHARACTERIZATION OF A COSMIC MUON NEUTRINO FLUX FROM THE NORTHERN HEMISPHERE USING SIX YEARS OF ICECUBE DATA , 2016, The Astrophysical Journal.

[42]  Paolo Giommi,et al.  The Connection between X-Ray-- and Radio-selected BL Lacertae Objects , 1995 .

[43]  P. Giommi,et al.  A simplified view of blazars: the γ-ray case , 2013, 1302.4331.

[44]  The Fermi-LAT Collaboration Fermi Large Area Telescope Third Source Catalog , 2015, 1501.02003.

[45]  F. Aharonian,et al.  Energy spectra of gamma-rays, electrons and neutrinos produced at interactions of relativistic protons with low energy radiation , 2008, 0803.0688.

[46]  Tum,et al.  Extreme blazars as counterparts of IceCube astrophysical neutrinos , 2016, 1601.06550.

[47]  T. Alexander,et al.  Is AGN Variability Correlated with Other AGN Properties?—ZDCF Analysis of Small Samples of Sparse Light Curves , 1997 .

[48]  J. Chiang,et al.  2FHL: THE SECOND CATALOG OF HARD FERMI-LAT SOURCES , 2015, 1503.02664.

[49]  F. Halzen,et al.  Neutrino Fluxes from Active Galaxies: A Model-Independent Estimate , 1997, astro-ph/9702193.

[50]  The Fermi-LAT Collaboration The Second Catalog of Active Galactic Nuclei Detected by the Fermi Large Area Telescope , 2011, 1108.1420.

[51]  Yunjin Kim,et al.  Nuclear Spectroscopic Telescope Array (NuSTAR) Mission , 2013, 2013 IEEE Aerospace Conference.