A difference method with parallel nature for solving time-space fractional Black-Schole model

Abstract The fractional Black-Scholes (B-S) model can better describe the change process of asset prices, so the research of its numerical solution has important theoretical significance and practical value. For the time-space fractional B-S model, a kind of difference format with parallel nature is proposed: based on the alternating segment Crank-Nicolson format, the Saul’yev asymmetric format at the inner boundary is replaced with an explicit format and an implicit format. A mixed alternating segment Crank-Nicolson (MASC-N) difference format is obtained. Theoretical analysis shows that the existence, uniqueness, unconditional stability, and convergence of the MASC-N scheme. Numerical experiments verify the theoretical analysis, and show that the format of this paper is better than the existing alternating segment pure explicit-implicit (PASE-I) difference format.

[1]  Bangti Jin,et al.  Subdiffusion with a time-dependent coefficient: Analysis and numerical solution , 2018, Math. Comput..

[2]  Chunye Gong,et al.  A parallel algorithm for the Riesz fractional reaction-diffusion equation with explicit finite difference method , 2013 .

[3]  Fawang Liu,et al.  Stability and convergence of the difference methods for the space-time fractional advection-diffusion equation , 2007, Appl. Math. Comput..

[4]  Zhi-Zhong Sun,et al.  A compact finite difference scheme for the fractional sub-diffusion equations , 2011, J. Comput. Phys..

[5]  D. J. Evans,et al.  Group explicit methods for parabolic equations , 1983 .

[6]  Guy Jumarie,et al.  Derivation and solutions of some fractional Black-Scholes equations in coarse-grained space and time. Application to Merton's optimal portfolio , 2010, Comput. Math. Appl..

[7]  Changpin Li,et al.  Finite difference Methods for fractional differential equations , 2012, Int. J. Bifurc. Chaos.

[8]  Santos B. Yuste,et al.  An Explicit Finite Difference Method and a New von Neumann-Type Stability Analysis for Fractional Diffusion Equations , 2004, SIAM J. Numer. Anal..

[9]  Diego A. Murio,et al.  Implicit finite difference approximation for time fractional diffusion equations , 2008, Comput. Math. Appl..

[10]  Kai Diethelm,et al.  An efficient parallel algorithm for the numerical solution of fractional differential equations , 2011 .

[11]  P. Carr,et al.  Time-Changed Levy Processes and Option Pricing ⁄ , 2002 .

[12]  S. Ahmed,et al.  A parallel Crank–Nicolson finite difference method for time-fractional parabolic equation , 2014, J. Num. Math..

[13]  Li Meng,et al.  Comparison of Black–Scholes Formula with Fractional Black–Scholes Formula in the Foreign Exchange Option Market with Changing Volatility , 2010 .

[14]  Dongfang Li,et al.  Exact solutions and numerical study of time fractional Burgers' equations , 2020, Appl. Math. Lett..

[15]  Santos B. Yuste,et al.  On an explicit finite difference method for fractional diffusion equations , 2003, ArXiv.

[16]  Hong Wang,et al.  A direct O(N log2 N) finite difference method for fractional diffusion equations , 2010, J. Comput. Phys..

[17]  Devendra Kumar,et al.  Numerical computation of fractional Black–Scholes equation arising in financial market , 2014 .

[18]  Fawang Liu,et al.  Implicit difference approximation for the time fractional diffusion equation , 2006 .

[19]  Zhimin Zhang,et al.  Linearized Galerkin FEMs for Nonlinear Time Fractional Parabolic Problems with Non-smooth Solutions in Time Direction , 2019, J. Sci. Comput..

[20]  Chuanju Xu,et al.  Finite difference/spectral approximations for the time-fractional diffusion equation , 2007, J. Comput. Phys..