Recursive Dynamics Algorithms for Serial, Parallel, and Closed-chain Multibody Systems
暂无分享,去创建一个
[1] Paolo Serafini,et al. On Theory and Practice of Robots and Manipulators , 1974 .
[2] Subir Kumar Saha,et al. Constraint Wrench Formulation for Closed-Loop Systems Using Two-Level Recursions , 2007 .
[3] John M. Hollerbach,et al. A Recursive Lagrangian Formulation of Maniputator Dynamics and a Comparative Study of Dynamics Formulation Complexity , 1980, IEEE Transactions on Systems, Man, and Cybernetics.
[4] Subir Kumar Saha,et al. A Dynamic Model Based Robot Arm Selection Criterion , 2004 .
[5] John J. Craig,et al. Introduction to Robotics Mechanics and Control , 1986 .
[6] Werner Schiehlen,et al. Multibody systems and robot dynamics , 1990 .
[7] Hauz Khas,et al. Dynamic model simplification of serial manipulators , 2006 .
[8] J. Angeles,et al. Dynamics of Nonholonomic Mechanical Systems Using a Natural Orthogonal Complement , 1991 .
[9] Michael Valášek,et al. Kinematics and Dynamics of Machinery , 1996 .
[10] G. Stewart. Introduction to matrix computations , 1973 .
[11] S. Saha,et al. Use Of Hoeken s And Pantograph Mechanisms For Carpet Scrapping Operations , 2003 .
[12] J. G. MACGREGOR. “Kinematics and Dynamics” , 1888, Nature.
[13] J. Angeles,et al. Recursive Kinematics and Inverse Dynamics for a Planar 3R Parallel Manipulator , 2005 .
[14] Subir Kumar Saha,et al. Analytical Expression for the Inverted Inertia Matrix of Serial Robots , 1999, Int. J. Robotics Res..
[15] M. Hiller,et al. Dynamics of Multiloop Systems , 1995 .
[16] H. Brauchli,et al. Dynamical equations in natural coordinates , 1991 .
[17] A. G. Greenhill. Kinematics and Dynamics , 1888, Nature.
[18] Giuseppe Rodriguez,et al. Kalman filtering, smoothing, and recursive robot arm forward and inverse dynamics , 1987, IEEE Journal on Robotics and Automation.
[19] Parviz E. Nikravesh,et al. Systematic Construction of the Equations of Motion for Multibody Systems Containing Closed Kinematic Loops , 1989 .
[20] Edward J. Haug,et al. A Recursive Formulation for Constrained Mechanical System Dynamics: Part III. Parallel Processor Implementation , 1988 .
[21] Dinesh K. Pai,et al. Forward Dynamics, Elimination Methods, and Formulation Stiffness in Robot Simulation , 1997, Int. J. Robotics Res..
[22] Ronald L. Huston,et al. Dynamics of Constrained Multibody Systems , 1984 .
[23] S. Saha. Dynamics of Serial Multibody Systems Using the Decoupled Natural Orthogonal Complement Matrices , 1999 .
[24] Olivier Chételat,et al. A Reduced Model for Constrained Rigid Bodies with application to Parallel Robots , 1994 .
[25] David E. Orin,et al. Efficient Dynamic Computer Simulation of Robotic Mechanisms , 1982 .
[26] J. Y. S. Luh,et al. On-Line Computational Scheme for Mechanical Manipulators , 1980 .
[27] John J. Craig Zhu,et al. Introduction to robotics mechanics and control , 1991 .
[28] Werner Schiehlen,et al. RECURSIVE KINEMATICS AND DYNAMICS FOR PARALLEL STRUCTURED CLOSED-LOOP MULTIBODY SYSTEMS* , 2001 .
[29] Thomas R. Kane,et al. The Use of Kane's Dynamical Equations in Robotics , 1983 .
[30] Werner Schiehlen,et al. Computational aspects in multibody system dynamics , 1991 .
[31] Jorge Angeles,et al. Dynamic Simulation of n-Axis Serial Robotic Manipulators Using a Natural Orthogonal Complement , 1988, Int. J. Robotics Res..
[32] William H. Press,et al. Numerical recipes in C , 2002 .
[33] E. Haug,et al. Generalized Coordinate Partitioning for Dimension Reduction in Analysis of Constrained Dynamic Systems , 1982 .
[34] Jorge Angeles,et al. Fundamentals of Robotic Mechanical Systems , 2008 .
[35] J. Angeles,et al. The Formulation of Dynamical Equations of Holonomic Mechanical Systems Using a Natural Orthogonal Complement , 1988 .
[36] Rudra Pratap. Getting Started with MATLAB: Version 6: A Quick Introduction for Scientists and Engineers , 2002 .
[37] Amir Fijany,et al. Parallel O(log N) algorithms for computation of manipulator forward dynamics , 1994, IEEE Trans. Robotics Autom..
[38] H. Yoo,et al. A generalized recursive formulation for constrained mechanical system dynamics , 1999 .
[39] Bruno Siciliano,et al. Modeling and Control of Robot Manipulators , 1995 .
[40] E. Haug,et al. A Recursive Formulation for Constrained Mechanical System Dynamics: Part II. Closed Loop Systems , 1987 .
[41] Ronald L. Huston,et al. On Constraint Equations—A New Approach , 1974 .
[42] J. Denavit,et al. A kinematic notation for lower pair mechanisms based on matrices , 1955 .
[43] John McPhee,et al. On the use of linear graph theory in multibody system dynamics , 1996 .
[44] Subir Kumar Saha,et al. A decomposition of the manipulator inertia matrix , 1997, IEEE Trans. Robotics Autom..
[45] Roy Featherstone,et al. Robot Dynamics Algorithms , 1987 .
[46] Edward J. Haug,et al. A Recursive Formation for Constrained Mechanical Systems Dynamics: Part I, Open Loop Systems , 1987 .
[47] K. Anderson,et al. A Generalized Recursive Coordinate Reduction Method for Multibody System Dynamics , 2003 .
[48] Subir Kumar Saha,et al. A recursive, numerically stable, and efficient simulation algorithm for serial robots , 2007 .
[49] Manfred Hiller,et al. Multiloop Kinematic Chains , 1995 .
[50] R. Featherstone. The Calculation of Robot Dynamics Using Articulated-Body Inertias , 1983 .
[51] J. Angeles,et al. An algorithm for the inverse dynamics of n-axis general manipulators using Kane's equations , 1989 .
[52] Werner Schiehlen,et al. DYNAMIC ANALYSIS OF CONSTRAINED MULTIBODY SYSTEMS USING INVERSE KINEMATICS , 1993 .
[53] Guillermo Rodríguez-Ortiz,et al. Spatial operator factorization and inversion of the manipulator mass matrix , 1992, IEEE Trans. Robotics Autom..