Recursive Dynamics Algorithms for Serial, Parallel, and Closed-chain Multibody Systems

In this paper, it is shown how to obtain recursive dynamics algorithms for multibody systems with serial, parallel, and closed-loop chains using the concept of Decoupled Natural Orthogonal Complement (DeNOC) matrices. The DeNOC is the product of two block matrices to yield the Natural Orthogonal Complement (NOC), which is a velocity transformation matrix orthogonal to the kinematic constraint matrix of the system at hand. Note that one of the two DeNOC matrices is a lower block triangular and the other one is a block diagonal. This representation allows one to compute the inverse and forward dynamics algorithms of the constrained multibody systems recursively, which was not possible with the original representation of the NOC. As a result, the computational complexities of the algorithms are reduced in many instances, particularly, in forward dynamics with large number of bodies in a system, e.g., space robots, parallel robots, vehicle systems, etc. Moreover, many physical interpretations are available, for example, articulated body inertia, etc., which can be exploited for debugging of a program and architecture design. Illustrations with several multibody systems, e.g., two six-degrees-of-freedom serial manipulators, a parallel manipulator, a carpet scrapping machine with general closed-chain, are presented.

[1]  Paolo Serafini,et al.  On Theory and Practice of Robots and Manipulators , 1974 .

[2]  Subir Kumar Saha,et al.  Constraint Wrench Formulation for Closed-Loop Systems Using Two-Level Recursions , 2007 .

[3]  John M. Hollerbach,et al.  A Recursive Lagrangian Formulation of Maniputator Dynamics and a Comparative Study of Dynamics Formulation Complexity , 1980, IEEE Transactions on Systems, Man, and Cybernetics.

[4]  Subir Kumar Saha,et al.  A Dynamic Model Based Robot Arm Selection Criterion , 2004 .

[5]  John J. Craig,et al.  Introduction to Robotics Mechanics and Control , 1986 .

[6]  Werner Schiehlen,et al.  Multibody systems and robot dynamics , 1990 .

[7]  Hauz Khas,et al.  Dynamic model simplification of serial manipulators , 2006 .

[8]  J. Angeles,et al.  Dynamics of Nonholonomic Mechanical Systems Using a Natural Orthogonal Complement , 1991 .

[9]  Michael Valášek,et al.  Kinematics and Dynamics of Machinery , 1996 .

[10]  G. Stewart Introduction to matrix computations , 1973 .

[11]  S. Saha,et al.  Use Of Hoeken s And Pantograph Mechanisms For Carpet Scrapping Operations , 2003 .

[12]  J. G. MACGREGOR “Kinematics and Dynamics” , 1888, Nature.

[13]  J. Angeles,et al.  Recursive Kinematics and Inverse Dynamics for a Planar 3R Parallel Manipulator , 2005 .

[14]  Subir Kumar Saha,et al.  Analytical Expression for the Inverted Inertia Matrix of Serial Robots , 1999, Int. J. Robotics Res..

[15]  M. Hiller,et al.  Dynamics of Multiloop Systems , 1995 .

[16]  H. Brauchli,et al.  Dynamical equations in natural coordinates , 1991 .

[17]  A. G. Greenhill Kinematics and Dynamics , 1888, Nature.

[18]  Giuseppe Rodriguez,et al.  Kalman filtering, smoothing, and recursive robot arm forward and inverse dynamics , 1987, IEEE Journal on Robotics and Automation.

[19]  Parviz E. Nikravesh,et al.  Systematic Construction of the Equations of Motion for Multibody Systems Containing Closed Kinematic Loops , 1989 .

[20]  Edward J. Haug,et al.  A Recursive Formulation for Constrained Mechanical System Dynamics: Part III. Parallel Processor Implementation , 1988 .

[21]  Dinesh K. Pai,et al.  Forward Dynamics, Elimination Methods, and Formulation Stiffness in Robot Simulation , 1997, Int. J. Robotics Res..

[22]  Ronald L. Huston,et al.  Dynamics of Constrained Multibody Systems , 1984 .

[23]  S. Saha Dynamics of Serial Multibody Systems Using the Decoupled Natural Orthogonal Complement Matrices , 1999 .

[24]  Olivier Chételat,et al.  A Reduced Model for Constrained Rigid Bodies with application to Parallel Robots , 1994 .

[25]  David E. Orin,et al.  Efficient Dynamic Computer Simulation of Robotic Mechanisms , 1982 .

[26]  J. Y. S. Luh,et al.  On-Line Computational Scheme for Mechanical Manipulators , 1980 .

[27]  John J. Craig Zhu,et al.  Introduction to robotics mechanics and control , 1991 .

[28]  Werner Schiehlen,et al.  RECURSIVE KINEMATICS AND DYNAMICS FOR PARALLEL STRUCTURED CLOSED-LOOP MULTIBODY SYSTEMS* , 2001 .

[29]  Thomas R. Kane,et al.  The Use of Kane's Dynamical Equations in Robotics , 1983 .

[30]  Werner Schiehlen,et al.  Computational aspects in multibody system dynamics , 1991 .

[31]  Jorge Angeles,et al.  Dynamic Simulation of n-Axis Serial Robotic Manipulators Using a Natural Orthogonal Complement , 1988, Int. J. Robotics Res..

[32]  William H. Press,et al.  Numerical recipes in C , 2002 .

[33]  E. Haug,et al.  Generalized Coordinate Partitioning for Dimension Reduction in Analysis of Constrained Dynamic Systems , 1982 .

[34]  Jorge Angeles,et al.  Fundamentals of Robotic Mechanical Systems , 2008 .

[35]  J. Angeles,et al.  The Formulation of Dynamical Equations of Holonomic Mechanical Systems Using a Natural Orthogonal Complement , 1988 .

[36]  Rudra Pratap Getting Started with MATLAB: Version 6: A Quick Introduction for Scientists and Engineers , 2002 .

[37]  Amir Fijany,et al.  Parallel O(log N) algorithms for computation of manipulator forward dynamics , 1994, IEEE Trans. Robotics Autom..

[38]  H. Yoo,et al.  A generalized recursive formulation for constrained mechanical system dynamics , 1999 .

[39]  Bruno Siciliano,et al.  Modeling and Control of Robot Manipulators , 1995 .

[40]  E. Haug,et al.  A Recursive Formulation for Constrained Mechanical System Dynamics: Part II. Closed Loop Systems , 1987 .

[41]  Ronald L. Huston,et al.  On Constraint Equations—A New Approach , 1974 .

[42]  J. Denavit,et al.  A kinematic notation for lower pair mechanisms based on matrices , 1955 .

[43]  John McPhee,et al.  On the use of linear graph theory in multibody system dynamics , 1996 .

[44]  Subir Kumar Saha,et al.  A decomposition of the manipulator inertia matrix , 1997, IEEE Trans. Robotics Autom..

[45]  Roy Featherstone,et al.  Robot Dynamics Algorithms , 1987 .

[46]  Edward J. Haug,et al.  A Recursive Formation for Constrained Mechanical Systems Dynamics: Part I, Open Loop Systems , 1987 .

[47]  K. Anderson,et al.  A Generalized Recursive Coordinate Reduction Method for Multibody System Dynamics , 2003 .

[48]  Subir Kumar Saha,et al.  A recursive, numerically stable, and efficient simulation algorithm for serial robots , 2007 .

[49]  Manfred Hiller,et al.  Multiloop Kinematic Chains , 1995 .

[50]  R. Featherstone The Calculation of Robot Dynamics Using Articulated-Body Inertias , 1983 .

[51]  J. Angeles,et al.  An algorithm for the inverse dynamics of n-axis general manipulators using Kane's equations , 1989 .

[52]  Werner Schiehlen,et al.  DYNAMIC ANALYSIS OF CONSTRAINED MULTIBODY SYSTEMS USING INVERSE KINEMATICS , 1993 .

[53]  Guillermo Rodríguez-Ortiz,et al.  Spatial operator factorization and inversion of the manipulator mass matrix , 1992, IEEE Trans. Robotics Autom..