Information Distance in Multiples
暂无分享,去创建一个
[1] gérard,et al. Formation à distance , 2008 .
[2] L. Hood,et al. Gene expression dynamics in the macrophage exhibit criticality , 2008, Proceedings of the National Academy of Sciences.
[3] R. Stephenson. A and V , 1962, The British journal of ophthalmology.
[4] Nikolai K. Vereshchagin,et al. Independent minimum length programs to translate between given strings , 2000, Proceedings 15th Annual IEEE Conference on Computational Complexity.
[5] Stephanie Wehner,et al. Analyzing worms and network traffic using compression , 2005, J. Comput. Secur..
[6] Paul M. B. Vitányi,et al. Clustering by compression , 2003, IEEE Transactions on Information Theory.
[7] Samantha Jenkins,et al. Information theory-based software metrics and obfuscation , 2004, J. Syst. Softw..
[8] Thomas M. Cover,et al. Elements of Information Theory , 2005 .
[9] Khalid Sayood,et al. A new sequence distance measure for phylogenetic tree construction , 2003, Bioinform..
[10] Paul M. B. Vitányi,et al. The Google Similarity Distance , 2004, IEEE Transactions on Knowledge and Data Engineering.
[11] Bin Ma,et al. The similarity metric , 2001, IEEE Transactions on Information Theory.
[12] Cungen Cao,et al. A Google-Based Statistical Acquisition Model of Chinese Lexical Concepts , 2007, KSEM.
[13] Li Wei,et al. Compression-based data mining of sequential data , 2007, Data Mining and Knowledge Discovery.
[14] Alexander Kraskov,et al. Published under the scientific responsability of the EUROPEAN PHYSICAL SOCIETY Incorporating , 2002 .
[15] A. Kolmogorov. Three approaches to the quantitative definition of information , 1968 .
[16] Jan H. M. Korst,et al. Web-Based Artist Categorization , 2006, ISMIR.
[17] Michael V. Vyugin. Systems of Strings with High Mutual Complexity , 2003, Probl. Inf. Transm..
[18] Andrej Muchnik,et al. Conditional complexity and codes , 2002, Theor. Comput. Sci..
[19] Ronald de Wolf,et al. Algorithmic Clustering of Music Based on String Compression , 2004, Computer Music Journal.
[20] Nikolai K. Vereshchagin,et al. Upper semilattice of binary strings with the relation "x is simple conditional to y" , 1999, Proceedings. Fourteenth Annual IEEE Conference on Computational Complexity (Formerly: Structure in Complexity Theory Conference) (Cat.No.99CB36317).
[21] Péter Gács,et al. Information Distance , 1998, IEEE Trans. Inf. Theory.
[22] Péter Gács,et al. Information Distance , 1998, IEEE Trans. Inf. Theory.
[23] Dieter Fensel,et al. Unifying Reasoning and Search to Web Scale , 2007, IEEE Internet Computing.
[24] Jaideep Srivastava,et al. Selecting the right objective measure for association analysis , 2004, Inf. Syst..
[25] András Kocsor,et al. Sequence analysis Application of compression-based distance measures to protein sequence classification : a methodological study , 2005 .
[26] Manuel Cebrián,et al. The Normalized Compression Distance Is Resistant to Noise , 2007, IEEE Transactions on Information Theory.
[27] Nikolai K. Vereshchagin,et al. Logical operations and Kolmogorov complexity. II , 2001, Proceedings 16th Annual IEEE Conference on Computational Complexity.
[28] Nikolai K. Vereshchagin,et al. Logical operations and Kolmogorov complexity , 2002, Theor. Comput. Sci..
[29] Xian Zhang,et al. Information distance from a question to an answer , 2007, KDD '07.
[30] Paul M. B. Vitányi,et al. An Introduction to Kolmogorov Complexity and Its Applications , 1993, Graduate Texts in Computer Science.
[31] Luis Filipe Coelho Antunes,et al. Clustering Fetal Heart Rate Tracings by Compression , 2006, 19th IEEE Symposium on Computer-Based Medical Systems (CBMS'06).
[32] Natalio Krasnogor,et al. Measuring the similarity of protein structures by means of the universal similarity metric , 2004, Bioinform..
[33] Bo Hu,et al. Semantic metrics , 2007, Int. J. Metadata Semant. Ontologies.
[34] Xin Chen,et al. An information-based sequence distance and its application to whole mitochondrial genome phylogeny , 2001, Bioinform..
[35] Xin Chen,et al. Shared information and program plagiarism detection , 2004, IEEE Transactions on Information Theory.
[36] Vittorio Loreto,et al. Language trees and zipping. , 2002, Physical review letters.
[37] Cécile Ané,et al. Missing the forest for the trees: phylogenetic compression and its implications for inferring complex evolutionary histories. , 2005, Systematic biology.
[38] Nikolai K. Vereshchagin,et al. Upper semi-lattice of binary strings with the relation "x is simple conditional to y" , 2002, Theor. Comput. Sci..
[39] Ilya Shmulevich,et al. Critical networks exhibit maximal information diversity in structure-dynamics relationships. , 2008, Physical review letters.
[40] Bin Hu,et al. On Capturing Semantics in Ontology Mapping , 2008, World Wide Web.
[41] Ming Li,et al. An Introduction to Kolmogorov Complexity and Its Applications , 2019, Texts in Computer Science.
[42] Frank van Harmelen,et al. Using Google distance to weight approximate ontology matches , 2007, WWW '07.
[43] Michael V. Vyugin. Information distance and conditional complexities , 2002, Theor. Comput. Sci..
[44] W. Marsden. I and J , 2012 .
[45] L. Levin,et al. THE COMPLEXITY OF FINITE OBJECTS AND THE DEVELOPMENT OF THE CONCEPTS OF INFORMATION AND RANDOMNESS BY MEANS OF THE THEORY OF ALGORITHMS , 1970 .
[46] D. Fesenmaier,et al. Representation of the Online Tourism Domain in Search Engines , 2008 .
[47] Mohammed Bennamoun,et al. Featureless Data Clustering , 2009 .
[48] Bin Ma,et al. Information shared by many objects , 2008, CIKM '08.