Effective Bezout identities inQ[z1, ...,zn]

Abstract : If p(sub 1)..... , P(sub m)are n-variate polynomials with integral coefficients and no common zeros in C(exp n), Brownawell has shown in 1986 that there exist q(sub 1 )%...., q(sub m) polynomials with integral coefficients and nu is an element of Z(+) such that p(sub 1) q(sub 1) + ... + p(sub m) q(sub m) = nu, and max deg q(sub j) </= [max deg p(sub j) (exp n))]. On the other hand if h = logarithm of the largest coefficient of all the p(sub j), and h(sub 1) is the corresponding quantity for the q(sub j), then there is no sharp estimate of h(sub 1) in terms of h and max deg p(sub j). In this paper we show that when the variety of common zeros at infinity of the p(sub j) is discrete then (essentially) we have: h(sub 1) </= D(exp cn)h for an absolute constant c. If there were an algorithm to compute the q(sub j) in D(exp cn) time one would obtain exactly the above estimate. Current algorithms require about D(exp n squared) operations.

[1]  C. Berenstein,et al.  Analytic Continuation of Currents and Division Problems , 1989 .

[2]  K. Mahler,et al.  On Some Inequalities for Polynomials in Several Variables , 1962 .

[3]  L. Hörmander,et al.  An introduction to complex analysis in several variables , 1973 .

[4]  E. L. Stout Review: L. A. Aĭzenberg and A. P. Yuzhakov, Integral representations and residues in multidimensional complex analysis , 1984 .

[5]  B. A. Taylor,et al.  Interpolation problems in Cn with applications to harmonic analysis , 1980 .

[6]  Joe W. Harris,et al.  Principles of Algebraic Geometry , 1978 .

[7]  Bernard Shiffman,et al.  Degree bounds for the division problem in polynomial ideals. , 1989 .

[8]  Carlos A. Berenstein,et al.  Analytic Bezout identities , 1989 .

[9]  Par Patrice Philippon,et al.  A propos du texte de W. D. Brownawell: “Bounds for the degrees in the Nullstellensatz” , 1988 .

[10]  A. Seidenberg Constructions in algebra , 1974 .

[11]  Carlos A. Berenstein,et al.  On explicit solutions to the Bezout equation , 1984 .

[12]  L. Aĭzenberg,et al.  Integral Representations and Residues in Multidimensional Complex Analysis , 1983 .

[13]  Carlos A. Berenstein,et al.  Le problème de la déconvolution , 1983 .

[14]  Nicolas R. Coleff,et al.  Les courants résiduels associés à une forme méromorphe , 1978 .

[15]  H. Skoda Application des techniques $L^2$ à la théorie des idéaux d’une algèbre de fonctions holomorphes avec poids , 1972 .

[16]  D. Lazard Algèbre linéaire sur $K[X_1,\dots,X_n]$ et élimination , 1977 .

[17]  A. Meyer,et al.  The complexity of the word problems for commutative semigroups and polynomial ideals , 1982 .

[18]  Patrice Philippon,et al.  Critères Pour L’indépendance Algébrique , 1986 .

[19]  B. Buchberger An Algorithmic Method in Polynomial Ideal Theory , 1985 .

[20]  一松 信,et al.  R.C. Gunning and H.Rossi: Analytic Functions of Several Complex Variables, Prentice-Hall, Englewood Cliffs, N.J., 1965, 317頁, 15×23cm, $12.50. , 1965 .

[21]  W. Brownawell Bounds for the degrees in the Nullstellensatz , 1987 .

[22]  P. Lelong Plurisubharmonic Functions and Positive Differential Forms , 1969 .

[23]  J. Kollár Sharp effective Nullstellensatz , 1988 .

[24]  Grete Hermann,et al.  Die Frage der endlich vielen Schritte in der Theorie der Polynomideale , 1926 .

[25]  János Kollár,et al.  A global lojasiewicz inequality for algebraic varieties , 1992 .

[26]  Carlos A. Berenstein,et al.  Bounds for the degrees in the division problem. , 1990 .

[27]  David Masser,et al.  Fields of large transcendence degree generated by values of elliptic functions , 1983 .

[28]  D. Masser On polynomials and exponential polynomials in several complex variables , 1981 .

[29]  Anatolii A. Logunov,et al.  Analytic functions of several complex variables , 1965 .

[30]  M. Andersson,et al.  A shortcut to weighted representation formulas for holomorphic functions , 1988 .

[31]  Patrice Philippon,et al.  Dénominateurs dans le théorème des zéros de Hilbert , 1991 .

[32]  W. Dale Brownawell,et al.  Local Diophantine Nullstellen inequalities , 1988 .

[33]  André Galligo,et al.  Some New Effectivity Bounds in Computational Geometry , 1988, AAECC.

[34]  P. Dolbeault Theory of residues and homology , 1970 .