On loops in inflation II: IR effects in single clock inflation

[1]  L. Senatore,et al.  The effective field theory of cosmological large scale structures , 2012, 1206.2926.

[2]  L. Senatore,et al.  Universality of the volume bound in slow-roll eternal inflation , 2011, 1111.1725.

[3]  S. Giddings,et al.  Fluctuating geometries, q-observables, and infrared growth in inflationary spacetimes , 2011, 1109.1000.

[4]  M. Zaldarriaga,et al.  Cosmological non-linearities as an effective fluid , 2010, 1004.2488.

[5]  M. Zaldarriaga,et al.  Dissipative effects in the effective field theory of inflation , 2011, 1109.4192.

[6]  P. Creminelli,et al.  The (not so) squeezed limit of the primordial 3-point function , 2011, 1106.1462.

[7]  Y. Urakawa Influence of gauge artifact on adiabatic and entropy perturbations during inflation , 2011, 1105.1078.

[8]  S. Giddings,et al.  Cosmological observables, infrared growth of fluctuations, and scale-dependent anisotropies , 2011, 1104.0002.

[9]  Takahiro Tanaka,et al.  Dominance of gauge artifact in the consistency relation for the primordial bispectrum , 2011, 1103.1251.

[10]  A. Hebecker,et al.  Inflationary correlation functions without infrared divergences , 2011, 1102.0560.

[11]  Takahiro Tanaka,et al.  Natural Selection of Inflationary Vacuum Required by Infra-Red Regularity and Gauge-Invariance , 2010, 1009.2947.

[12]  S. Giddings,et al.  Semiclassical relations and IR effects in de Sitter and slow-roll space-times , 2010, 1005.1056.

[13]  A. Riotto,et al.  The probability equation for the cosmological comoving curvature perturbation , 2011 .

[14]  E. Komatsu,et al.  A new method for calculating the primordial bispectrum in the squeezed limit , 2010, 1006.5457.

[15]  A. Hebecker,et al.  Inflationary infrared divergences: geometry of the reheating surface vs. δN formalism , 2010, 1005.3307.

[16]  M. Zaldarriaga,et al.  On loops in inflation , 2009, 0912.2734.

[17]  L. Senatore,et al.  Trapped Inflation , 2009, 0902.1006.

[18]  L. Senatore,et al.  The volume of the universe after inflation and de Sitter entropy , 2008, 0812.2246.

[19]  S. Weinberg Effective field theory for inflation , 2008, 0804.4291.

[20]  M. Zaldarriaga,et al.  The Phase Transition to Slow-roll Eternal Inflation , 2008 .

[21]  S. Weinberg Quantum contributions to cosmological correlations. II. Can these corrections become large , 2006, hep-th/0605244.

[22]  S. Weinberg Quantum contributions to cosmological correlations , 2005, hep-th/0506236.