Chiral expression from molecular to macroscopic level via pH modulation in terbium coordination polymers

[1]  Li‐Min Zheng,et al.  Formation Mechanism and Reversible Expansion and Shrinkage of Magnesium-Based Homochiral Metal-Organic Nanotubes. , 2017, Chemistry.

[2]  Katsuhiro Maeda,et al.  Supramolecular Helical Systems: Helical Assemblies of Small Molecules, Foldamers, and Polymers with Chiral Amplification and Their Functions. , 2016, Chemical reviews.

[3]  N. Seeman,et al.  3D DNA Crystals and Nanotechnology , 2016 .

[4]  C. Das,et al.  Accessing Three-Dimensional Crystals with Incorporated Guests through Metal-Directed Coiled-Coil Peptide Assembly. , 2016, Journal of the American Chemical Society.

[5]  Li‐Min Zheng,et al.  Magnetic materials based on 3d metal phosphonates , 2016 .

[6]  G. Grason,et al.  Morphology selection via geometric frustration in chiral filament bundles. , 2016, Nature materials.

[7]  Prashant Sinha,et al.  Protein engineering and de novo designing of a biocatalyst , 2016, Journal of molecular recognition : JMR.

[8]  Li Zhang,et al.  Chiral Nanoarchitectonics: Towards the Design, Self‐Assembly, and Function of Nanoscale Chiral Twists and Helices , 2016, Advanced materials.

[9]  Li‐Min Zheng,et al.  Homochiral metal phosphonate nanotubes. , 2015, Chemical communications.

[10]  N. Seeman,et al.  Programmable materials and the nature of the DNA bond , 2015, Science.

[11]  D. Kowalczyk,et al.  An organocatalytic biomimetic approach to α-aminophosphonates. , 2015, Chemical communications.

[12]  P. Bouř,et al.  Applications of chiroptical spectroscopy to coordination compounds , 2015 .

[13]  Itamar Willner,et al.  DNA switches: from principles to applications. , 2015, Angewandte Chemie.

[14]  C. Faul,et al.  Helically structured metal–organic frameworks fabricated by using supramolecular assemblies as templates† †Electronic supplementary information (ESI) available: Detailed TEM images and other extensive figures. See DOI: 10.1039/c4sc03278k Click here for additional data file. , 2014, Chemical science.

[15]  Pengfei Li,et al.  Parameterization of Highly Charged Metal Ions Using the 12-6-4 LJ-Type Nonbonded Model in Explicit Water , 2014, The journal of physical chemistry. B.

[16]  P. Peluso,et al.  Homochiral metal-organic frameworks and their application in chromatography enantioseparations. , 2014, Journal of chromatography. A.

[17]  Hao Yan,et al.  Structural DNA Nanotechnology: State of the Art and Future Perspective , 2014, Journal of the American Chemical Society.

[18]  B. Kahr,et al.  Growth actuated bending and twisting of single crystals. , 2014, Angewandte Chemie.

[19]  I. Lednev,et al.  Is Supramolecular Filament Chirality the Underlying Cause of Major Morphology Differences in Amyloid Fibrils? , 2014, Journal of the American Chemical Society.

[20]  Michael O’Keeffe,et al.  The Chemistry and Applications of Metal-Organic Frameworks , 2013, Science.

[21]  T. Ueno Porous protein crystals as reaction vessels. , 2013, Chemistry.

[22]  C. Su,et al.  Metal-organic gels: From discrete metallogelators to coordination polymers , 2013 .

[23]  Yawen Wang,et al.  Emerging chirality in nanoscience. , 2013, Chemical Society reviews.

[24]  Nataša Jonoska,et al.  Computing by molecular self-assembly , 2012, Interface Focus.

[25]  Wim F Vranken,et al.  ACPYPE - AnteChamber PYthon Parser interfacE , 2012, BMC Research Notes.

[26]  Z. Tang,et al.  Nanoscale biocoordination polymers: novel materials from an old topic. , 2012, Chemistry.

[27]  Alexander Hexemer,et al.  Biomimetic self-templating supramolecular structures , 2011, Nature.

[28]  Ming Yang,et al.  Nanoscale helices from inorganic materials , 2011 .

[29]  Friedrich C Simmel,et al.  Nucleic acid based molecular devices. , 2011, Angewandte Chemie.

[30]  A. Clearfield,et al.  Metal phosphonate chemistry : from synthesis to applications , 2011 .

[31]  Yan Liu,et al.  Engineering Homochiral Metal‐Organic Frameworks for Heterogeneous Asymmetric Catalysis and Enantioselective Separation , 2010, Advanced materials.

[32]  Jean Paul Remon,et al.  Polymeric multilayer capsules in drug delivery. , 2010, Angewandte Chemie.

[33]  N. Seeman Nanomaterials based on DNA. , 2010, Annual review of biochemistry.

[34]  Lei Jiang,et al.  Twisted metal-amino acid nanobelts: chirality transcription from molecules to frameworks. , 2010, Journal of the American Chemical Society.

[35]  R. Morris,et al.  Induction of chiral porous solids containing only achiral building blocks. , 2010, Nature chemistry.

[36]  Jianzhuang Jiang,et al.  Helical nanostructures self-assembled from optically active phthalocyanine derivatives bearing four optically active binaphthyl moieties: effect of metal-ligand coordination on the morphology, dimension, and helical pitch of self-assembled nanostructures. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[37]  Jiang Zhou,et al.  Metal-driven hierarchical self-assembled one-dimensional nanohelices. , 2009, Nano letters.

[38]  Pamela E. Constantinou,et al.  From Molecular to Macroscopic via the Rational Design of a Self-Assembled 3D DNA Crystal , 2009, Nature.

[39]  E. W. Meijer,et al.  Preparation and Characterization of Helical Self-Assembled Nanofibers , 2009 .

[40]  Li‐Min Zheng,et al.  Homochiral lanthanide phosphonates with brick-wall-shaped layer structures showing chiroptical and catalytical properties. , 2009, Inorganic chemistry.

[41]  Samuel I Stupp,et al.  Molecular self-assembly into one-dimensional nanostructures. , 2008, Accounts of chemical research.

[42]  Li‐Min Zheng,et al.  Polymorphism in homochiral zinc phosphonates. , 2008, Inorganic chemistry.

[43]  S. Nishimoto,et al.  Photoelectrochemical evaluation of pH effect on hole transport through triplex-forming DNA immobilized on a gold electrode. , 2008, Organic & biomolecular chemistry.

[44]  Susumu Kitagawa,et al.  Chemistry of coordination space of porous coordination polymers , 2007 .

[45]  Guangren Yu,et al.  Molecular simulation of guanidinium-based ionic liquids. , 2007, The journal of physical chemistry. B.

[46]  Jun‐An Ma Catalytic Asymmetric Synthesis of α- and β-Amino Phosphonic Acid Derivatives , 2006 .

[47]  Holger Gohlke,et al.  The Amber biomolecular simulation programs , 2005, J. Comput. Chem..

[48]  Gerrit Groenhof,et al.  GROMACS: Fast, flexible, and free , 2005, J. Comput. Chem..

[49]  A. Margolin,et al.  Injectable controlled release formulations incorporating protein crystals. , 2004, Journal of controlled release : official journal of the Controlled Release Society.

[50]  M. Navia,et al.  Protein Crystals as Novel Catalytic Materials. , 2001, Angewandte Chemie.

[51]  Alan E. Rowan,et al.  Helical Molecular Programming , 1998 .

[52]  Steve Plimpton,et al.  Fast parallel algorithms for short-range molecular dynamics , 1993 .

[53]  S. Nosé A unified formulation of the constant temperature molecular dynamics methods , 1984 .

[54]  William L. Jorgensen,et al.  Quantum and statistical mechanical studies of liquids. 25. Solvation and conformation of methanol in water , 1983 .

[55]  W. L. Jorgensen,et al.  Solvation and conformation of methanol in water , 1983 .

[56]  T. Schneider,et al.  Molecular-dynamics study of a three-dimensional one-component model for distortive phase transitions , 1978 .