The monotonic increasing relationship between average powers of CMOS VLSI circuits with and without delay and its applications

The authors theoretically describe the monotonic increasing relationship between average powers of a CMOS VLSI circuit with and without delay. The power of an ideal circuit without delay, which can be fast computed, has been used as the evaluation criterion for the power of a practical circuit with delay, which needs more computing time, in such fields as fast estimation for the average power and the maximum power, and fast optimization for the low test power. The authors propose a novel simulation approach that uses delay-free power to compact a long input vector pair sequence into a short sequence and then, uses the compacted one to fast simulate the average (or maximum) power for a CMOS circuit. In comparison with the traditional simulation approach that uses an un-compacted input sequence to simulate the average (or maximum) power, experiment results demonstrate that in the field of fast estimation for the average power, the present approach can be 6–10 times faster without significant loss in accuracy (less than 3.5% on average), and in the field of fast estimation for the maximum power, this approach can be 6–8 times faster without significant loss in accuracy (less than 5% on average). In the field of fast optimization for the test power, the authors propose a novel delay-free power optimization approach for the test power. Experiment results demonstrate that, in comparison with the approach of direct optimization and the approach of Hamming distance optimization, this approach is of the highest optimization efficiency because it needs shorter time (16.84%) to obtain a better optimization effect (reducing 35.11% test power).

[1]  Kurt Keutzer,et al.  Estimation of power dissipation in CMOS combinational circuits , 1990, IEEE Proceedings of the Custom Integrated Circuits Conference.

[2]  S. Chakravarty,et al.  Two techniques for minimizing power dissipation in scan circuits during test application , 1994, Proceedings of IEEE 3rd Asian Test Symposium (ATS).

[3]  Luo Zu A Novel Approach to Fast Simulate Maximum Power Dissipation of CMOS Combinational Circuits , 2001 .

[4]  Kaushik Roy,et al.  Maximum power estimation for CMOS circuits using deterministic and statistical approaches , 1998, IEEE Trans. Very Large Scale Integr. Syst..

[5]  Kaushik Roy,et al.  Statistical estimation of sequential circuit activity , 1995, ICCAD.

[6]  Radu Marculescu,et al.  Sequence compaction for power estimation: theory and practice , 1999, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[7]  Sandeep K. Gupta,et al.  ATPG for heat dissipation minimization during test application , 1994, Proceedings., International Test Conference.

[8]  Salvador Manich,et al.  Maximizing the weighted switching activity in combinational CMOS circuits under the variable delay model , 1997, Proceedings European Design and Test Conference. ED & TC 97.

[9]  Kaushik Roy,et al.  A power macromodeling technique based on power sensitivity , 1998, Proceedings 1998 Design and Automation Conference. 35th DAC. (Cat. No.98CH36175).

[10]  Ping Yang,et al.  A Monte Carlo approach for power estimation , 1993, IEEE Trans. Very Large Scale Integr. Syst..

[11]  Farid N. Najm,et al.  A survey of power estimation techniques in VLSI circuits , 1994, IEEE Trans. Very Large Scale Integr. Syst..

[12]  Michael S. Hsiao,et al.  Peak power estimation of VLSI circuits: new peak power measures , 2000, IEEE Trans. Very Large Scale Integr. Syst..

[13]  Farid N. Najm,et al.  Transition density: a new measure of activity in digital circuits , 1993, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[14]  E. Macii,et al.  High-level Power Modeling, Estimation, And Optimization , 1997, Proceedings of the 34th Design Automation Conference.