Lottery Semantics: A Compositional Semantics for Probabilistic First-Order Logic with Imperfect Information

We present a compositional semantics for first-order logic with imperfect information that is equivalent to Sevenster and Sandu’s equilibrium semantics (under which the truth value of a sentence in a finite model is equal to the minimax value of its semantic game). Our semantics is a generalization of an earlier semantics developed by the first author that was based on behavioral strategies, rather than mixed strategies.

[1]  Andreas Blass,et al.  Henkin quantifiers and complete problems , 1986, Ann. Pure Appl. Log..

[2]  Pietro Galliani,et al.  Game values and equilibria for undetermined sentences of Dependence Logic , 2008 .

[3]  Jaakko Hintikka,et al.  The Game Of Language , 1983 .

[4]  J. Hintikka The Principles of Mathematics Revisited: Introduction , 1996 .

[5]  J. M. Bilbao,et al.  Contributions to the Theory of Games , 2005 .

[6]  Jaakko Hintikka,et al.  Definite Descriptions in Game-Theoretical Semantics , 1983 .

[7]  David Gale,et al.  13. Infinite Games with Perfect Information , 1953 .

[8]  Jaakko Hintikka,et al.  Quantifiers vs. Quantification Theory , 1973 .

[9]  Merlijn Sevenster,et al.  Branches of imperfect information : logic, games, and computation , 2002 .

[10]  J. Neumann Zur Theorie der Gesellschaftsspiele , 1928 .

[11]  Merlijn Sevenster,et al.  Independence-Friendly Logic - a Game-Theoretic Approach , 2011, London Mathematical Society lecture note series.

[12]  Grzegorz Rozenberg,et al.  Structures in Logic and Computer Science , 1997, Lecture Notes in Computer Science.

[13]  Jouko A. Väänänen,et al.  Dependence Logic - A New Approach to Independence Friendly Logic , 2007, London Mathematical Society student texts.

[14]  Jaakko Hintikka,et al.  Game-Theoretical Semantics , 1997, Handbook of Logic and Language.

[15]  Philip Wolfe,et al.  Contributions to the theory of games , 1953 .

[16]  Merlijn Sevenster,et al.  Equilibrium semantics of languages of imperfect information , 2010, Ann. Pure Appl. Log..

[17]  Wilfrid Hodges,et al.  Compositional Semantics for a Language of Imperfect Information , 1997, Log. J. IGPL.

[18]  J. Hintikka,et al.  The game of language : studies in game-theoretical semantics and its applications , 1983 .

[19]  H. W. Kuhn,et al.  11. Extensive Games and the Problem of Information , 1953 .

[20]  J. Hintikka,et al.  Game-Theoretical Semantics , 1997 .

[21]  Jan Woleński,et al.  Jaakko HINTIKKA and Jack KULAS: Anaphora and Definite Descriptions. Two Applications of Game-Theoretical Semantics . Dordrecht/Boston/Lancaster: D. Reidel 1985 (Synthese Language Library 26), XIV + 250. , 1988 .

[22]  J. Hintikka,et al.  Informational Independence as a Semantical Phenomenon , 1989 .

[23]  H. Enderton Finite Partially-Ordered Quantifiers , 1970 .

[24]  Petr Cintula,et al.  Towards Evaluation Games for Fuzzy Logics , 2009, Games: Unifying Logic, Language, and Philosophy.

[25]  Wilfried Hodges,et al.  Some Strange Quantifiers , 1997, Structures in Logic and Computer Science.

[26]  Wilbur John Walkoe,et al.  Finite Partially-Ordered Quantification , 1970, J. Symb. Log..

[27]  Pietro Galliani,et al.  Probabilistic Dependence Logic , 2008 .

[28]  H. Putnam,et al.  Reasoning and the Logic of Things. The Cambridge Conferences Lectures of 1898. , 1993 .