Th1 versus Th17: are T cell cytokines relevant in multiple sclerosis?

[1]  E. Tolosa,et al.  Phenotypical and functional characterization of T helper 17 cells in multiple sclerosis. , 2009, Brain : a journal of neurology.

[2]  T. Pekmezović,et al.  Expression of TH1 and TH17 cytokines and transcription factors in multiple sclerosis patients: Does baseline T-Bet mRNA predict the response to interferon-beta treatment? , 2009, Journal of Neuroimmunology.

[3]  A. Bothwell,et al.  Transforming growth factor β is dispensable for the molecular orchestration of Th17 cell differentiation , 2009, The Journal of experimental medicine.

[4]  A. Bothwell,et al.  Transforming growth factor β is dispensable for the molecular orchestration of Th17 cell differentiation , 2009, The Journal of Experimental Medicine.

[5]  Jianping Jin,et al.  IFN-β Inhibits Human Th17 Cell Differentiation1 , 2009, The Journal of Immunology.

[6]  P. Duquette,et al.  Preferential recruitment of interferon‐γ–expressing TH17 cells in multiple sclerosis , 2009, Annals of neurology.

[7]  S. Lira,et al.  Mice deficient for CCR6 fail to control chronic experimental autoimmune encephalomyelitis , 2009, Journal of Neuroimmunology.

[8]  Yuhong Yang,et al.  T-bet is essential for encephalitogenicity of both Th1 and Th17 cells , 2009, The Journal of experimental medicine.

[9]  B. Becher,et al.  IL‐23‐driven encephalo‐tropism and Th17 polarization during CNS‐inflammation in vivo , 2009, European journal of immunology.

[10]  C. Martínez-A,et al.  CCR6 regulates EAE pathogenesis by controlling regulatory CD4+ T‐cell recruitment to target tissues , 2009, European journal of immunology.

[11]  Laura Conti,et al.  T‐helper 17 cells expand in multiple sclerosis and are inhibited by interferon‐β , 2009, Annals of neurology.

[12]  B. Engelhardt,et al.  C-C chemokine receptor 6–regulated entry of TH-17 cells into the CNS through the choroid plexus is required for the initiation of EAE , 2009, Nature Immunology.

[13]  S. McColl,et al.  Inhibition of CCR6 Function Reduces the Severity of Experimental Autoimmune Encephalomyelitis via Effects on the Priming Phase of the Immune Response1 , 2009, The Journal of Immunology.

[14]  B. Becher,et al.  IL-17A and IL-17F do not contribute vitally to autoimmune neuro-inflammation in mice. , 2008, The Journal of clinical investigation.

[15]  C. Constantinescu,et al.  Repeated subcutaneous injections of IL12/23 p40 neutralising antibody, ustekinumab, in patients with relapsing-remitting multiple sclerosis: a phase II, double-blind, placebo-controlled, randomised, dose-ranging study , 2008, The Lancet Neurology.

[16]  B. Segal,et al.  IL-12– and IL-23–modulated T cells induce distinct types of EAE based on histology, CNS chemokine profile, and response to cytokine inhibition , 2008, The Journal of experimental medicine.

[17]  J. Goverman,et al.  Differential regulation of central nervous system autoimmunity by TH1 and TH17 cells , 2008, Nature Medicine.

[18]  L. Cosmi,et al.  Phenotypic and functional features of human Th17 cells , 2007, The Journal of experimental medicine.

[19]  A. Lovett-racke,et al.  T-bet Regulates the Fate of Th1 and Th17 Lymphocytes in Autoimmunity1 , 2007, The Journal of Immunology.

[20]  D. Littman,et al.  The Orphan Nuclear Receptor RORγt Directs the Differentiation Program of Proinflammatory IL-17+ T Helper Cells , 2006, Cell.

[21]  K. Mills,et al.  A crucial role for interleukin (IL)-1 in the induction of IL-17–producing T cells that mediate autoimmune encephalomyelitis , 2006, The Journal of experimental medicine.

[22]  Shailendra Giri,et al.  T‐bet is essential for the progression of experimental autoimmune encephalomyelitis , 2006, Immunology.

[23]  S. Nakae,et al.  IL-17 Plays an Important Role in the Development of Experimental Autoimmune Encephalomyelitis1 , 2006, The Journal of Immunology.

[24]  H. Weiner,et al.  Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells , 2006, Nature.

[25]  R. D. Hatton,et al.  Transforming growth factor-β induces development of the TH17 lineage , 2006, Nature.

[26]  R. J. Hocking,et al.  TGFbeta in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells. , 2006, Immunity.

[27]  L. Glimcher,et al.  T-bet-dependent expression of osteopontin contributes to T cell polarization. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[28]  S. Atlas,et al.  Progressive multifocal leukoencephalopathy in a patient treated with natalizumab. , 2005, The New England journal of medicine.

[29]  F. Mihara,et al.  Intrathecal activation of the IL-17/IL-8 axis in opticospinal multiple sclerosis. , 2005, Brain : a journal of neurology.

[30]  T. Mcclanahan,et al.  IL-23 drives a pathogenic T cell population that induces autoimmune inflammation , 2005, The Journal of experimental medicine.

[31]  A. Lovett-racke,et al.  Silencing T-bet defines a critical role in the differentiation of autoreactive T lymphocytes. , 2004, Immunity.

[32]  S. Szabo,et al.  Loss of T-bet, But Not STAT1, Prevents the Development of Experimental Autoimmune Encephalomyelitis , 2004, The Journal of experimental medicine.

[33]  R. Kastelein,et al.  Interleukin-23 rather than interleukin-12 is the critical cytokine for autoimmune inflammation of the brain , 2003, Nature.

[34]  David H. Miller,et al.  A controlled trial of natalizumab for relapsing multiple sclerosis. , 2003, The New England journal of medicine.

[35]  M. Kamoun,et al.  IL-12p35-Deficient Mice Are Susceptible to Experimental Autoimmune Encephalomyelitis: Evidence for Redundancy in the IL-12 System in the Induction of Central Nervous System Autoimmune Demyelination1 , 2002, The Journal of Immunology.

[36]  B. Becher,et al.  Experimental autoimmune encephalitis and inflammation in the absence of interleukin-12. , 2002, The Journal of clinical investigation.

[37]  Jorge R. Oksenberg,et al.  Gene-microarray analysis of multiple sclerosis lesions yields new targets validated in autoimmune encephalomyelitis , 2002, Nature Medicine.

[38]  L. Klein,et al.  Cutting Edge: Attenuated Experimental Autoimmune Encephalomyelitis in Eta-1/Osteopontin-Deficient Mice1 , 2002, The Journal of Immunology.

[39]  Jorge R. Oksenberg,et al.  The Influence of the Proinflammatory Cytokine, Osteopontin, on Autoimmune Demyelinating Disease , 2001, Science.

[40]  O. Favorova,et al.  Randomized study of antibodies to IFN-g and TNF-a in secondary progressive multiple sclerosis , 2001 .

[41]  S. Khoury,et al.  Effect of targeted disruption of STAT4 and STAT6 on the induction of experimental autoimmune encephalomyelitis. , 2001, The Journal of clinical investigation.

[42]  H. Kiyono,et al.  Role of MOG-stimulated Th1 type "light up" (GFP+) CD4+ T cells for the development of experimental autoimmune encephalomyelitis (EAE). , 2001, Journal of autoimmunity.

[43]  J. Frank,et al.  Encephalitogenic potential of the myelin basic protein peptide (amino acids 83–99) in multiple sclerosis: Results of a phase II clinical trial with an altered peptide ligand , 2000, Nature Medicine.

[44]  Richard A. Rudick,et al.  Quantification of Self-Recognition in Multiple Sclerosis by Single-Cell Analysis of Cytokine Production1 , 2000, The Journal of Immunology.

[45]  S. Wittmer,et al.  Failure to Suppress the Expansion of the Activated Cd4 T Cell Population in Interferon γ–Deficient Mice Leads to Exacerbation of Experimental Autoimmune Encephalomyelitis , 2000, The Journal of experimental medicine.

[46]  A. Pierani,et al.  Requirement for RORgamma in thymocyte survival and lymphoid organ development. , 2000, Science.

[47]  B. Becher,et al.  Interferon‐γ Modulates Human Oligodendrocyte Susceptibility To Fas‐Mediated Apoptosis , 2000 .

[48]  P. Kivisäkk,et al.  Interleukin-17 mRNA expression in blood and CSF mononuclear cells is augmented in multiple sclerosis , 1999, Multiple sclerosis.

[49]  J. Burns,et al.  Isolation of myelin basic protein–specific T cells predominantly from the memory T‐cell compartment in multiple sclerosis , 1999, Annals of neurology.

[50]  P. Perrin,et al.  Decreased dependence of myelin basic protein-reactive T cells on CD28-mediated costimulation in multiple sclerosis patients , 1998, Journal of Neuroimmunology.

[51]  Y. Saeki,et al.  IL-6-deficient mice are resistant to the induction of experimental autoimmune encephalomyelitis provoked by myelin oligodendrocyte glycoprotein. , 1998, International immunology.

[52]  A. Ben-nun,et al.  Interleukin‐6 functions in autoimmune encephalomyelitis: a study in gene‐targeted mice , 1998, European journal of immunology.

[53]  C. June,et al.  Decreased dependence of myelin basic protein-reactive T cells on CD28-mediated costimulation in multiple sclerosis patients. A marker of activated/memory T cells. , 1998 .

[54]  W. Cowden,et al.  IFN-gamma plays a critical down-regulatory role in the induction and effector phase of myelin oligodendrocyte glycoprotein-induced autoimmune encephalomyelitis. , 1996, Journal of immunology.

[55]  A. Billiau,et al.  Chronic relapsing experimental autoimmune encephalomyelitis (CREAE) in mice: enhancement by monoclonal antibodies against interferon‐γ , 1996, European journal of immunology.

[56]  J. Leonard,et al.  Adoptive transfer of experimental allergic encephalomyelitis after in vitro treatment with recombinant murine interleukin-12. Preferential expansion of interferon-gamma-producing cells and increased expression of macrophage-associated inducible nitric oxide synthase as immunomodulatory mechanisms. , 1996, The American journal of pathology.

[57]  L. Steinman,et al.  Mice with a disrupted IFN-gamma gene are susceptible to the induction of experimental autoimmune encephalomyelitis (EAE). , 1996, Journal of immunology.

[58]  Meijuan Zhao,et al.  Interferon-γ-Induced Oligodendrocyte Cell Death: Implications for the Pathogenesis of Multiple Sclerosis , 1995, Molecular medicine.

[59]  P. Albert,et al.  Retinoid treatment of experimental allergic encephalomyelitis. IL-4 production correlates with improved disease course. , 1995, Journal of immunology.

[60]  W. Paul,et al.  Cytokine-induced immune deviation as a therapy for inflammatory autoimmune disease , 1994, Journal of Neuroimmunology.

[61]  C. Janeway,et al.  Surface expression of alpha 4 integrin by CD4 T cells is required for their entry into brain parenchyma , 1993, The Journal of experimental medicine.

[62]  T. Olsson,et al.  Autoreactive T and B cells responding to myelin proteolipid protein in multiple sclerosis and controls , 1991, European journal of immunology.

[63]  T. Olsson,et al.  Autoreactive T lymphocytes in multiple sclerosis determined by antigen-induced secretion of interferon-gamma. , 1990, The Journal of clinical investigation.

[64]  R J Albertini,et al.  T cells responsive to myelin basic protein in patients with multiple sclerosis. , 1990, Science.

[65]  E. Sercarz,et al.  Encephalitogenic T cells in the B10.PL model of experimental allergic encephalomyelitis (EAE) are of the Th-1 lymphokine subtype. , 1989, Cellular immunology.

[66]  R. Swanborg,et al.  Antigen-specific inhibition of immune interferon production by suppressor cells of autoimmune encephalomyelitis. , 1988, Journal of immunology.

[67]  R. Hirsch,et al.  EXACERBATIONS OF MULTIPLE SCLEROSIS IN PATIENTS TREATED WITH GAMMA INTERFERON , 1987, The Lancet.

[68]  C. Pettinelli,et al.  Adoptive transfer of experimental allergic encephalomyelitis in SJL/J mice after in vitro activation of lymph node cells by myelin basic protein: requirement for Lyt 1+ 2- T lymphocytes. , 1981, Journal of immunology.

[69]  D. Littman,et al.  The orphan nuclear receptor RORgammat directs the differentiation program of proinflammatory IL-17+ T helper cells. , 2006, Cell.

[70]  O. Favorova,et al.  Randomized study of antibodies to IFN-gamma and TNF-alpha in secondary progressive multiple sclerosis. , 2001, Multiple sclerosis.

[71]  J. Antel,et al.  Interferon-gamma modulates human oligodendrocyte susceptibility to Fas-mediated apoptosis. , 2000, Journal of neuropathology and experimental neurology.

[72]  S. Harroch,et al.  Antagonism of interferon beta on interferon gamma: inhibition of signal transduction in vitro and reduction of serum levels in multiple sclerosis patients. , 1995, Multiple sclerosis.

[73]  H. McFarland,et al.  T helper 1 (Th1) functional phenotype of human myelin basic protein-specific T lymphocytes. , 1993, Autoimmunity.

[74]  R. Knobler,et al.  Monoclonal anti-gamma interferon antibodies enhance experimental allergic encephalomyelitis. , 1993, Autoimmunity.

[75]  F. Sánchez‐Madrid,et al.  Prevention of experimental autoimmune encephalomyelitis by antibodies against alpha 4 beta 1 integrin. , 1992, Nature.