Robin Schwarz Algorithm for the NICEM Method: The $\mathbf{P}_q$ Finite Element Case

In [M. J. Gander et al., in Domain Decomposition Methods in Science and Engineering, Lect. Notes Comput. Sci. Eng. 40, Springer-Verlag, Berlin, 2005, pp. 259--266; C. Japhet, Y. Maday, and F. Nataf, Math. Models Methods Appl. Sci., 23 (2013), pp. 2253--2292] we proposed a new nonconforming domain decomposition paradigm, the new interface cement equilibrated mortar method, based on Schwarz-type methods, that allows for the use of Robin interface conditions on nonconforming grids. The error analysis was done for $\mathbf{P}_1$ finite elements, in two and three dimensions. In this paper, we provide new numerical analysis results that allow us to extend this error analysis in two dimensions for piecewise polynomials of higher order and also prove the convergence of the iterative algorithm in all these cases.

[1]  Olof B. Widlund,et al.  Iterative Substructuring Preconditioners For Mortar Element Methods In Two Dimensions , 1997 .

[2]  Robert Michael Kirby,et al.  From h to p efficiently: Implementing finite and spectral/hp element methods to achieve optimal performance for low- and high-order discretisations , 2010, J. Comput. Phys..

[3]  Yvon Maday,et al.  A NEW INTERFACE CEMENT EQUILIBRATED MORTAR (NICEM) METHOD WITH ROBIN INTERFACE CONDITIONS: THE P1 FINITE ELEMENT CASE , 2013 .

[4]  Wolfgang Dahmen,et al.  Stability Estimates of the Mortar Finite Element Method for 3-Dimensional Problems , 2007 .

[5]  Frédéric Nataf,et al.  The optimized order 2 method : Application to convection-diffusion problems , 2001, Future Gener. Comput. Syst..

[6]  Catherine Lacour,et al.  Analyse et resolution numerique de methodes de sous-domaines non conformes pour des problemes de plaques , 1997 .

[7]  Souad Ghanemi Méthode de décomposition de domaines avec conditions de transmissions non locales pour des problèmes de propagation d'ondes , 1996 .

[8]  D. Owen Handbook of Mathematical Functions with Formulas , 1965 .

[9]  Frédéric Nataf,et al.  Finite Volume Methods for Domain Decomposition on Nonmatching Grids with Arbitrary Interface Conditions , 2005, SIAM J. Numer. Anal..

[10]  Thomas Hagstrom,et al.  Numerical Experiments on a Domain Decomposition Algorithm for Nonlinear Elliptic Boundary Value Problems , 1988 .

[11]  Andrea Toselli,et al.  Domain decomposition methods : algorithms and theory , 2005 .

[12]  Caroline Japhet,et al.  Méthode de décomposition de domaine et conditions aux limites artificielles en mécanique des fluides: méthode Optimisée d'Orde 2. , 1998 .

[13]  Yvon Maday,et al.  Coupling Spectral and Finite Elements for Second Order Elliptic Three-Dimensional Equations , 1999 .

[14]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .

[15]  Faker Ben Belgacem,et al.  The Mortar finite element method with Lagrange multipliers , 1999, Numerische Mathematik.

[16]  Martin J. Gander,et al.  Optimized Schwarz Methods , 2006, SIAM J. Numer. Anal..

[17]  Jin-Fa Lee,et al.  A non-overlapping domain decomposition method with non-matching grids for modeling large finite antenna arrays , 2005 .

[18]  Frédéric Nataf,et al.  FACTORIZATION OF THE CONVECTION-DIFFUSION OPERATOR AND THE SCHWARZ ALGORITHM , 1995 .

[19]  C. Bernardi,et al.  A New Nonconforming Approach to Domain Decomposition : The Mortar Element Method , 1994 .

[20]  Andrew F. Peterson,et al.  Comparison of Two-Dimensional Conformal Local Adiation Boundary Conditions , 1996 .

[21]  V. Girault,et al.  A Local Regularization Operator for Triangular and Quadrilateral Finite Elements , 1998 .

[22]  David E. Keyes,et al.  Additive Schwarz Methods with Nonreflecting Boundary Conditions for the Parallel Computation of Helm , 1998 .

[23]  Frédéric Nataf,et al.  A New Interface Cement Equilibrated Mortar Method with Ventcel Conditions , 2014 .

[24]  Frédéric Nataf,et al.  A new Cement to Glue non-conforming Grids with Robin interface conditions: the finite element case , 2002 .

[25]  Bruno Després,et al.  A Domain Decomposition Method for the Helmholtz equation and related Optimal Control Problems , 1996 .

[26]  Jérôme Jaffré,et al.  Space-Time Domain Decomposition Methods for Diffusion Problems in Mixed Formulations , 2013, SIAM J. Numer. Anal..

[27]  Frédéric Nataf,et al.  A new cement to glue non-conforming grids with Robin interface conditions: The finite volume case , 2007, Numerische Mathematik.

[28]  Gilles Scarella,et al.  An efficient way to perform the assembly of finite element matrices in vector languages , 2014, ArXiv.

[29]  Stéphane Lanteri,et al.  A domain decomposition method for solving the three-dimensional time-harmonic Maxwell equations discretized by discontinuous Galerkin methods , 2008, J. Comput. Phys..

[30]  Frédéric Nataf,et al.  The optimized order 2 method: application to convection-diffusion problems , 1999 .