Causal association of genetically determined circulating vitamin D metabolites and calcium with multiple sclerosis in participants of European descent

[1]  B. Engelhardt,et al.  Full spectrum of vitamin D immunomodulation in multiple sclerosis: mechanisms and therapeutic implications , 2022, Brain communications.

[2]  Tejaswini Ashok,et al.  Therapeutic Role of Vitamin D in Multiple Sclerosis: An Essentially Contested Concept , 2022, Cureus.

[3]  Ren Wang Mendelian randomization study updates the effect of 25-hydroxyvitamin D levels on the risk of multiple sclerosis , 2022, Journal of translational medicine.

[4]  W. Lowe,et al.  Maternal and Neonatal 3-epi-25-hydroxyvitamin D Concentration and Factors Influencing Their Concentrations , 2021, Journal of the Endocrine Society.

[5]  F. Rivadeneira,et al.  The health effects of vitamin D supplementation: evidence from human studies , 2021, Nature Reviews Endocrinology.

[6]  Sheyu Li,et al.  Genetically predicted lifelong circulating 25(OH)D levels are associated with serum calcium levels and kidney stone risk. , 2021, The Journal of clinical endocrinology and metabolism.

[7]  J. Damoiseaux,et al.  Vitamin D supplementation in multiple sclerosis: an expert opinion based on the review of current evidence , 2021, Expert review of neurotherapeutics.

[8]  P. Munroe,et al.  Genetically Determined Serum Calcium Levels and Markers of Ventricular Repolarization , 2021, Circulation. Genomic and precision medicine.

[9]  F. Gao,et al.  Impact of serum calcium levels on total body bone mineral density: A mendelian randomization study in five age strata. , 2021, Clinical nutrition.

[10]  M. Brandi,et al.  Hormonal regulation of biomineralization , 2021, Nature Reviews Endocrinology.

[11]  J. Richards,et al.  The relative contributions of obesity, vitamin D, leptin, and adiponectin to multiple sclerosis risk: A Mendelian randomization mediation analysis , 2021, Multiple sclerosis.

[12]  Wei Wang,et al.  Relationship between serum nutritional factors and bone mineral density: a Mendelian randomization study. , 2021, The Journal of clinical endocrinology and metabolism.

[13]  J. Danesh,et al.  The association between circulating 25-hydroxyvitamin D metabolites and type 2 diabetes in European populations: A meta-analysis and Mendelian randomisation analysis , 2020, PLoS medicine.

[14]  S. Larsson,et al.  An atlas on risk factors for multiple sclerosis: a Mendelian randomization study , 2020, Journal of Neurology.

[15]  H. McNulty,et al.  Health effects of vitamin and mineral supplements , 2020, BMJ.

[16]  J. Linseisen,et al.  Role of Vitamin D in Preventing and Treating Selected Extraskeletal Diseases—An Umbrella Review , 2020, Nutrients.

[17]  J. Sellner,et al.  Vitamin D Supplementation in Multiple Sclerosis: A Critical Analysis of Potentials and Threats , 2020, Nutrients.

[18]  C. Robinson-Cohen,et al.  Association of Genetic Variants Related to Serum Calcium Levels with Reduced Bone Mineral Density. , 2020, The Journal of clinical endocrinology and metabolism.

[19]  F. Paul,et al.  Vitamin D and Disease Severity in Multiple Sclerosis—Baseline Data From the Randomized Controlled Trial (EVIDIMS) , 2020, Frontiers in Neurology.

[20]  James R. Staley,et al.  A robust and efficient method for Mendelian randomization with hundreds of genetic variants , 2020, Nature Communications.

[21]  G. Giovannoni,et al.  BMI and low vitamin D are causal factors for multiple sclerosis , 2020, Neurology: Neuroimmunology & Neuroinflammation.

[22]  F. Paul,et al.  High-dose vitamin D supplementation in multiple sclerosis – results from the randomized EVIDIMS (efficacy of vitamin D supplementation in multiple sclerosis) trial , 2020, Multiple sclerosis journal - experimental, translational and clinical.

[23]  P. Visscher,et al.  Genome-wide association study identifies 143 loci associated with 25 hydroxyvitamin D concentration , 2019, bioRxiv.

[24]  E. Bisson,et al.  Multiple sclerosis is associated with low bone mineral density and osteoporosis. , 2019, Neurology. Clinical practice.

[25]  Simon C. Potter,et al.  Multiple sclerosis genomic map implicates peripheral immune cells and microglia in susceptibility , 2019, Science.

[26]  S. Larsson,et al.  Genetic Prediction of Serum 25-Hydroxyvitamin D, Calcium, and Parathyroid Hormone Levels in Relation to Development of Type 2 Diabetes: A Mendelian Randomization Study , 2019, Diabetes Care.

[27]  S. Larsson,et al.  Genetic predisposition to increased serum calcium, bone mineral density, and fracture risk in individuals with normal calcium levels: mendelian randomisation study , 2019, BMJ.

[28]  Jack Bowden,et al.  Meta‐analysis and Mendelian randomization: A review , 2019, Research synthesis methods.

[29]  Yang Hu,et al.  Circulating vitamin E levels and Alzheimer's disease: a Mendelian randomization study , 2018, Neurobiology of Aging.

[30]  J. Danesh,et al.  Association of Plasma Vitamin D Metabolites With Incident Type 2 Diabetes: EPIC-InterAct Case-Cohort Study , 2018, The Journal of clinical endocrinology and metabolism.

[31]  S. Broadley,et al.  Vitamin D for the treatment of multiple sclerosis: a meta-analysis , 2018, Journal of Neurology.

[32]  B. Neale,et al.  Detection of widespread horizontal pleiotropy in causal relationships inferred from Mendelian randomization between complex traits and diseases , 2018, Nature Genetics.

[33]  R. Jorde,et al.  C3-epimerization of 25-hydroxyvitamin D increases with increasing serum 25-hydroxyvitamin D levels and shows a high degree of tracking over time. , 2018, Clinical biochemistry.

[34]  C. Cooper,et al.  Calcium and Vitamin D Supplementation Are Not Associated With Risk of Incident Ischemic Cardiac Events or Death: Findings From the UK Biobank Cohort , 2018, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[35]  J. Richards,et al.  Mendelian randomization in multiple sclerosis: A causal role for vitamin D and obesity? , 2018, Multiple sclerosis.

[36]  A. Ascherio,et al.  25-Hydroxyvitamin D deficiency and risk of MS among women in the Finnish Maternity Cohort , 2017, Neurology.

[37]  Stephen Burgess,et al.  Association of Genetic Variants Related to Serum Calcium Levels With Coronary Artery Disease and Myocardial Infarction , 2017, JAMA.

[38]  S. Thompson,et al.  Interpreting findings from Mendelian randomization using the MR-Egger method , 2017, European Journal of Epidemiology.

[39]  E. Waubant,et al.  Evidence for a causal relationship between low vitamin D, high BMI, and pediatric-onset MS , 2017, Neurology.

[40]  Olena O Yavorska,et al.  MendelianRandomization: an R package for performing Mendelian randomization analyses using summarized data , 2017, International journal of epidemiology.

[41]  Sekar Kathiresan,et al.  Genetic Association of Waist-to-Hip Ratio With Cardiometabolic Traits, Type 2 Diabetes, and Coronary Heart Disease , 2017, JAMA.

[42]  Yongshuai Jiang,et al.  Integrating genome-wide association studies and gene expression data highlights dysregulated multiple sclerosis risk pathways , 2017, Multiple sclerosis.

[43]  K. Blennow,et al.  Calcium supplementation and risk of dementia in women with cerebrovascular disease , 2016, Neurology.

[44]  Ba,et al.  Mendelian randomization shows a causal effect of low vitamin D on multiple sclerosis risk , 2016, Neurology: Genetics.

[45]  David C. Wilson,et al.  Genome-wide association study implicates immune activation of multiple integrin genes in inflammatory bowel disease , 2016, Nature Genetics.

[46]  G. Davey Smith,et al.  Consistent Estimation in Mendelian Randomization with Some Invalid Instruments Using a Weighted Median Estimator , 2016, Genetic epidemiology.

[47]  C. Greenwood,et al.  Vitamin D and Risk of Multiple Sclerosis: A Mendelian Randomization Study , 2015, PLoS medicine.

[48]  D. Nickerson,et al.  A Multivariate Genome-Wide Association Analysis of 10 LDL Subfractions, and Their Response to Statin Treatment, in 1868 Caucasians , 2014, bioRxiv.

[49]  P. Visscher,et al.  Calculating statistical power in Mendelian randomization studies. , 2013, International journal of epidemiology.

[50]  Lorna M. Lopez,et al.  Meta-Analysis of Genome-Wide Association Studies Identifies Six New Loci for Serum Calcium Concentrations , 2013, PLoS genetics.

[51]  G. Hallmans,et al.  Vitamin D as a protective factor in multiple sclerosis , 2012, Neurology.

[52]  George Davey Smith,et al.  Using multiple genetic variants as instrumental variables for modifiable risk factors , 2012, Statistical methods in medical research.

[53]  Manolis Kellis,et al.  HaploReg: a resource for exploring chromatin states, conservation, and regulatory motif alterations within sets of genetically linked variants , 2011, Nucleic Acids Res..

[54]  S. Thompson,et al.  Avoiding bias from weak instruments in Mendelian randomization studies. , 2011, International journal of epidemiology.

[55]  T. VanderWeele,et al.  Power and instrument strength requirements for Mendelian randomization studies using multiple genetic variants. , 2011, International journal of epidemiology.

[56]  C. Cooper,et al.  The Risk of Fracture in Patients With Multiple Sclerosis: The UK General Practice Research Database , 2011, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[57]  A. Ascherio,et al.  Serum 25-hydroxyvitamin D levels and risk of multiple sclerosis. , 2006, JAMA.

[58]  G. Sigurdsson,et al.  Relationship between serum parathyroid hormone levels, vitamin D sufficiency, and calcium intake. , 2005, JAMA.

[59]  A. Sadovnick,et al.  Vitamin D intake and incidence of multiple sclerosis , 2004, Neurology.

[60]  D. Mattson,et al.  Sporadic corticosteroid pulses and osteoporosis in multiple sclerosis. , 1996, Archives of neurology.

[61]  OUP accepted manuscript , 2021, European Heart Journal.