On Multi-Domain Long-Tailed Recognition, Imbalanced Domain Generalization and Beyond

[1]  P. Indyk,et al.  Targeted Supervised Contrastive Learning for Long-Tailed Recognition , 2021, 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[2]  Shuicheng Yan,et al.  Deep Long-Tailed Learning: A Survey , 2021, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[3]  Donggeun Yoo,et al.  Reducing Domain Gap by Reducing Style Bias , 2021, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[4]  Philip H. S. Torr,et al.  Gradient Matching for Domain Generalization , 2021, ICLR.

[5]  Y. Qiao,et al.  Domain Generalization with MixStyle , 2021, ICLR.

[6]  Hao Wang,et al.  Delving into Deep Imbalanced Regression , 2021, ICML.

[7]  Stella X. Yu,et al.  Long-tailed Recognition by Routing Diverse Distribution-Aware Experts , 2020, ICLR.

[8]  Hongsheng Li,et al.  Balanced Meta-Softmax for Long-Tailed Visual Recognition , 2020, NeurIPS.

[9]  Sergey Levine,et al.  Adaptive Risk Minimization: A Meta-Learning Approach for Tackling Group Shift , 2020, ArXiv.

[10]  David Lopez-Paz,et al.  In Search of Lost Domain Generalization , 2020, ICLR.

[11]  Zhi Xu,et al.  Rethinking the Value of Labels for Improving Class-Imbalanced Learning , 2020, NeurIPS.

[12]  Aaron C. Courville,et al.  Out-of-Distribution Generalization via Risk Extrapolation (REx) , 2020, ICML.

[13]  Xiu-Shen Wei,et al.  BBN: Bilateral-Branch Network With Cumulative Learning for Long-Tailed Visual Recognition , 2019, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[14]  Bingbing Ni,et al.  Adversarial Domain Adaptation with Domain Mixup , 2019, AAAI.

[15]  Tatsunori B. Hashimoto,et al.  Distributionally Robust Neural Networks for Group Shifts: On the Importance of Regularization for Worst-Case Generalization , 2019, ArXiv.

[16]  Saining Xie,et al.  Decoupling Representation and Classifier for Long-Tailed Recognition , 2019, ICLR.

[17]  David Lopez-Paz,et al.  Invariant Risk Minimization , 2019, ArXiv.

[18]  Colin Wei,et al.  Learning Imbalanced Datasets with Label-Distribution-Aware Margin Loss , 2019, NeurIPS.

[19]  Stella X. Yu,et al.  Large-Scale Long-Tailed Recognition in an Open World , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[20]  Michèle Sebag,et al.  Multi-Domain Adversarial Learning , 2019, ICLR.

[21]  Fabio Maria Carlucci,et al.  Domain Generalization by Solving Jigsaw Puzzles , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[22]  Qi Xie,et al.  Meta-Weight-Net: Learning an Explicit Mapping For Sample Weighting , 2019, NeurIPS.

[23]  Yang Song,et al.  Class-Balanced Loss Based on Effective Number of Samples , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[24]  Bo Wang,et al.  Moment Matching for Multi-Source Domain Adaptation , 2018, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[25]  Pietro Perona,et al.  Recognition in Terra Incognita , 2018, ECCV.

[26]  Chen Change Loy,et al.  Deep Imbalanced Learning for Face Recognition and Attribute Prediction , 2018, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[27]  Alex ChiChung Kot,et al.  Domain Generalization with Adversarial Feature Learning , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[28]  Dacheng Tao,et al.  Domain Generalization via Conditional Invariant Representations , 2018, AAAI.

[29]  Shaogang Gong,et al.  Imbalanced Deep Learning by Minority Class Incremental Rectification , 2018, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[30]  Gilles Blanchard,et al.  Domain Generalization by Marginal Transfer Learning , 2017, J. Mach. Learn. Res..

[31]  Atsuto Maki,et al.  A systematic study of the class imbalance problem in convolutional neural networks , 2017, Neural Networks.

[32]  Timothy M. Hospedales,et al.  Learning to Generalize: Meta-Learning for Domain Generalization , 2017, AAAI.

[33]  Yongxin Yang,et al.  Deeper, Broader and Artier Domain Generalization , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).

[34]  Kaiming He,et al.  Focal Loss for Dense Object Detection , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).

[35]  Sethuraman Panchanathan,et al.  Deep Hashing Network for Unsupervised Domain Adaptation , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[36]  Kihyuk Sohn,et al.  Improved Deep Metric Learning with Multi-class N-pair Loss Objective , 2016, NIPS.

[37]  Xiao Zhang,et al.  Range Loss for Deep Face Recognition with Long-Tailed Training Data , 2016, 2017 IEEE International Conference on Computer Vision (ICCV).

[38]  Kate Saenko,et al.  Deep CORAL: Correlation Alignment for Deep Domain Adaptation , 2016, ECCV Workshops.

[39]  Xiaogang Wang,et al.  Learning Deep Feature Representations with Domain Guided Dropout for Person Re-identification , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[40]  Jian Sun,et al.  Deep Residual Learning for Image Recognition , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[41]  François Laviolette,et al.  Domain-Adversarial Training of Neural Networks , 2015, J. Mach. Learn. Res..

[42]  Yongxin Yang,et al.  A Unified Perspective on Multi-Domain and Multi-Task Learning , 2014, ICLR.

[43]  Jimmy Ba,et al.  Adam: A Method for Stochastic Optimization , 2014, ICLR.

[44]  Ye Xu,et al.  Unbiased Metric Learning: On the Utilization of Multiple Datasets and Web Images for Softening Bias , 2013, 2013 IEEE International Conference on Computer Vision.

[45]  Bernhard Schölkopf,et al.  Domain Generalization via Invariant Feature Representation , 2013, ICML.

[46]  Bernhard Schölkopf,et al.  A Kernel Two-Sample Test , 2012, J. Mach. Learn. Res..

[47]  Qiang Yang,et al.  A Survey on Transfer Learning , 2010, IEEE Transactions on Knowledge and Data Engineering.

[48]  Koby Crammer,et al.  A theory of learning from different domains , 2010, Machine Learning.

[49]  Koby Crammer,et al.  Multi-domain learning by confidence-weighted parameter combination , 2010, Machine Learning.

[50]  Haibo He,et al.  ADASYN: Adaptive synthetic sampling approach for imbalanced learning , 2008, 2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence).

[51]  Gal Chechik,et al.  Euclidean Embedding of Co-occurrence Data , 2004, J. Mach. Learn. Res..

[52]  Geoffrey E. Hinton,et al.  Neighbourhood Components Analysis , 2004, NIPS.

[53]  Michael C. Hout,et al.  Multidimensional Scaling , 2003, Encyclopedic Dictionary of Archaeology.

[54]  Vladimir Vapnik,et al.  An overview of statistical learning theory , 1999, IEEE Trans. Neural Networks.

[55]  Bryan Hooi,et al.  Test-Agnostic Long-Tailed Recognition by Test-Time Aggregating Diverse Experts with Self-Supervision , 2021, ArXiv.

[56]  Tao Xiang,et al.  Domain Generalization in Vision: A Survey , 2021 .

[57]  Andrew Y. Ng,et al.  Reading Digits in Natural Images with Unsupervised Feature Learning , 2011 .

[58]  Saiful Islam,et al.  Mahalanobis Distance , 2009, Encyclopedia of Biometrics.

[59]  Nitesh V. Chawla,et al.  SMOTE: Synthetic Minority Over-sampling Technique , 2002, J. Artif. Intell. Res..

[60]  Yoshua Bengio,et al.  Gradient-based learning applied to document recognition , 1998, Proc. IEEE.