Comparison of methods for solving sets of linear inequalities in the bounded-error context

Effective recursive updating of the solution set of linear inequalities has recently gained importance in the area of parameter bounding for system identification, prediction and control. When it is not empty, this solution set is a convex polyhedron, usually a convex polytope in the context of parameter bounding. Several algorithms have been proposed in the literature to update this polyhedron when a new inequality is introduced. This paper describes three of them in a unified framework and compares them on the number of operations involved and the memory space required.

[1]  Gustavo Belforte,et al.  Parameter estimation algorithms for a set-membership description of uncertainty , 1990, Autom..

[2]  J. Norton,et al.  Structure identification of parameter-bounding models by use of noise-structure bounds , 1989 .

[3]  Y. F. Huang,et al.  On the value of information in system identification - Bounded noise case , 1982, Autom..

[4]  Sandor M. Veres,et al.  Structure selection for bounded-parameter models: consistency conditions and selection criterion , 1991 .

[5]  V. Broman,et al.  A compact algorithm for the intersection and approximation of N -dimensional polytopes , 1990 .

[6]  T. H. Matheiss,et al.  A Survey and Comparison of Methods for Finding All Vertices of Convex Polyhedral Sets , 1980, Math. Oper. Res..

[7]  Eric Walter,et al.  Recursive Robust Minimax Estimation for Models Linear in Their Parameters , 1992 .

[8]  E. Walter,et al.  Estimation of parameter bounds from bounded-error data: a survey , 1990 .

[9]  G. Belforte,et al.  An Improved Parameter Identification Algorithm for Signals with Unknown-But-Bounded Errors , 1985 .

[10]  M. Milanese,et al.  Estimation theory and uncertainty intervals evaluation in presence of unknown but bounded errors: Linear families of models and estimators , 1982 .

[11]  E. Walter,et al.  Exact and recursive description of the feasible parameter set for bounded error models , 1987, 26th IEEE Conference on Decision and Control.

[12]  Narendra Karmarkar,et al.  A new polynomial-time algorithm for linear programming , 1984, Comb..

[13]  H. Witsenhausen Sets of possible states of linear systems given perturbed observations , 1968 .

[14]  F. Schweppe Recursive state estimation: Unknown but bounded errors and system inputs , 1967 .

[15]  H. Raiffa,et al.  3. The Double Description Method , 1953 .

[16]  J. Deller Set membership identification in digital signal processing , 1989, IEEE ASSP Magazine.

[17]  E. Walter,et al.  Further results on recursive polyhedral description of parameter uncertainty in the bounded-error context , 1989, Proceedings of the 28th IEEE Conference on Decision and Control,.

[18]  Sandor M. Veres,et al.  Bound-Based Worst-Case Self-Tuning Controllers , 1992 .

[19]  J. P. Norton,et al.  Fast and robust algorithm to compute exact polytope parameter bounds , 1990 .

[20]  V. Broman,et al.  Polytopes, a novel approach to tracking , 1986, 1986 25th IEEE Conference on Decision and Control.

[21]  E. Walter,et al.  Exact recursive polyhedral description of the feasible parameter set for bounded-error models , 1989 .