Mal-netminer: malware classification based on social network analysis of call graph
暂无分享,去创建一个
[1] Christopher Krügel,et al. Scalable, Behavior-Based Malware Clustering , 2009, NDSS.
[2] Li Dong,et al. Feature representation and selection in malicious code detection methods based on static system calls , 2011, Comput. Secur..
[3] Mattia Monga,et al. Detecting Self-mutating Malware Using Control-Flow Graph Matching , 2006, DIMVA.
[4] Aziz Mohaisen,et al. Unveiling Zeus: automated classification of malware samples , 2013, WWW.
[5] Curtis B. Storlie,et al. Graph-based malware detection using dynamic analysis , 2011, Journal in Computer Virology.
[6] Yogesh Virkar,et al. Power-law distributions in binned empirical data , 2012, 1208.3524.
[7] Lorenzo Martignoni,et al. A Framework for Behavior-Based Malware Analysis in the Cloud , 2009, ICISS.
[8] Christopher Krügel,et al. Effective and Efficient Malware Detection at the End Host , 2009, USENIX Security Symposium.
[9] Mark E. J. Newman,et al. Power-Law Distributions in Empirical Data , 2007, SIAM Rev..
[10] Kang G. Shin,et al. Large-scale malware indexing using function-call graphs , 2009, CCS.
[11] Ninghui Li,et al. PRECIP: Towards Practical and Retrofittable Confidential Information Protection , 2008, NDSS.
[12] Somesh Jha,et al. Static Analysis of Executables to Detect Malicious Patterns , 2003, USENIX Security Symposium.
[13] Jianyong Dai,et al. Efficient Virus Detection Using Dynamic Instruction Sequences , 2009, J. Comput..
[14] Heejo Lee,et al. Detecting metamorphic malwares using code graphs , 2010, SAC '10.
[15] Muhammad Zubair Shafiq,et al. Malware detection using statistical analysis of byte-level file content , 2009, CSI-KDD '09.