An Efficient Hardware Architecture for Multimedia Encryption and Authentication Using the Discrete Wavelet Transform

This paper introduces a zero-overhead encryption and authentication scheme for real-time embedded multimedia systems. The parametrized construction of the Discrete Wavelet Transform (DWT) compression block is used to introduce a free parameter in the design. It allows building a keyspace for lightweight multimedia encryption. The parametrization yields rational coefficients leading to an efficient fixed point hardware implementation. A clock speed of over 240 MHz was achieved on a Xilinx Virtex 5 FPGA. Comparison with existing approaches was performed to indicate the high throughput and low hardware overhead in adding the security feature to the DWT architecture.

[1]  William A. Pearlman,et al.  An image multiresolution representation for lossless and lossy compression , 1996, IEEE Trans. Image Process..

[2]  Truong Q. Nguyen,et al.  Wavelets and filter banks , 1996 .

[3]  Touradj Ebrahimi,et al.  The JPEG2000 still image coding system: an overview , 2000, IEEE Trans. Consumer Electron..

[4]  Miriam Leeser,et al.  Smart camera based on reconfigurable hardware enables diverse real-time applications , 2004, 12th Annual IEEE Symposium on Field-Programmable Custom Computing Machines.

[5]  Ingrid Verbauwhede,et al.  A 21.54 Gbits/s fully pipelined AES processor on FPGA , 2004, 12th Annual IEEE Symposium on Field-Programmable Custom Computing Machines.

[6]  Andreas Uhl,et al.  Key-dependency for a wavelet-based blind watermarking algorithm , 2004, MM&Sec '04.

[7]  Abdulmotaleb El-Saddik,et al.  A Survey of RST Invariant Image Watermarking Algorithms , 2006, 2006 Canadian Conference on Electrical and Computer Engineering.

[8]  Chaitali Chakrabarti,et al.  A Survey on Lifting-based Discrete Wavelet Transform Architectures , 2006, J. VLSI Signal Process..

[9]  Guido Masera,et al.  Multiplierless, Folded 9/7– 5/3 Wavelet VLSI Architecture , 2007, IEEE Transactions on Circuits and Systems II: Express Briefs.

[10]  Andreas Uhl,et al.  Parameterized biorthogonal wavelet lifting for lightweight JPEG 2000 transparent encryption , 2005, MM&Sec '05.

[11]  Heiko Schwarz,et al.  Overview of the Scalable Video Coding Extension of the H.264/AVC Standard , 2007, IEEE Transactions on Circuits and Systems for Video Technology.

[12]  David S. Taubman,et al.  High performance scalable image compression with EBCOT , 1999, Proceedings 1999 International Conference on Image Processing (Cat. 99CH36348).

[13]  M. Marcellin,et al.  Quantifying the parent-child coding gain in zero-tree-based coders , 2001, IEEE Signal Processing Letters.

[14]  Joseph Zambreno,et al.  Design and analysis of efficient reconfigurable wavelet filters , 2008, 2008 IEEE International Conference on Electro/Information Technology.

[15]  Liang-Gee Chen,et al.  Advances in Hardware Architectures for Image and Video Coding - A Survey , 2005, Proc. IEEE.

[16]  Jerome M. Shapiro,et al.  Embedded image coding using zerotrees of wavelet coefficients , 1993, IEEE Trans. Signal Process..

[17]  Nanning Zheng,et al.  Parametrization construction of biorthogonal wavelet filter banks for image coding , 2007, Signal Image Video Process..

[18]  Ankush Mittal,et al.  Content-based adaptive compression of educational videos using phase correlation techniques , 2006, Multimedia Systems.

[19]  Jelena Kovacevic,et al.  Wavelets and Subband Coding , 2013, Prentice Hall Signal Processing Series.

[20]  Ankush Mittal,et al.  Content-based Network Resource Allocation for Mobil e Engineering Laboratory Applications , 2007 .

[21]  Chaitali Chakrabarti,et al.  A survey of architectures for the discrete and continuous wavelet transforms , 1995, 1995 International Conference on Acoustics, Speech, and Signal Processing.

[22]  Wei Yu,et al.  An Efficient Quality Scalable Motion-JPEG2000 Transmission Scheme , 2001 .