MicroRNA-214 modulates the senescence of vascular smooth muscle cells in carotid artery stenosis

[1]  C-X-C Chemokine Receptor Type 4 , 2020, Definitions.

[2]  Mel S. Lee,et al.  Hyperbaric oxygen facilitates the effect of endothelial progenitor cell therapy on improving outcome of rat critical limb ischemia. , 2019, American journal of translational research.

[3]  Mel S. Lee,et al.  Extracorporeal shock wave-assisted adipose-derived fresh stromal vascular fraction restores the blood flow of critical limb ischemia in rat. , 2019, Vascular pharmacology.

[4]  Cheuk-Kwan Sun,et al.  Extracorporeal shockwave against inflammation mediated by GPR120 receptor in cyclophosphamide-induced rat cystitis model , 2018, Molecular Medicine.

[5]  Jian Xu,et al.  Endothelial–Vascular Smooth Muscle Cells Interactions in Atherosclerosis , 2018, Front. Cardiovasc. Med..

[6]  L. Tusell,et al.  Acute telomere deprotection prevents ongoing BFB cycles and rampant instability in p16INK4a-deficient epithelial cells , 2018, Oncotarget.

[7]  Peter A. Calabresi,et al.  Dimethyl fumarate targets GAPDH and aerobic glycolysis to modulate immunity , 2018, Science.

[8]  M. Bennett,et al.  Vascular smooth muscle cell death, autophagy and senescence in atherosclerosis , 2018, Cardiovascular research.

[9]  C. Mathers,et al.  Global and Regional Causes of Death: Patterns and Trends, 2000–15 , 2017 .

[10]  E. Cameron,et al.  RUNX‐mediated growth arrest and senescence are attenuated by diverse mechanisms in cells expressing RUNX1 fusion oncoproteins , 2017, Journal of cellular biochemistry.

[11]  L. Di Marcotullio,et al.  Selective targeting of HDAC1/2 elicits anticancer effects through Gli1 acetylation in preclinical models of SHH Medulloblastoma , 2017, Scientific Reports.

[12]  Feng Yang,et al.  MicroRNA-214 regulates smooth muscle cell differentiation from stem cells by targeting RNA-binding protein QKI , 2017, Oncotarget.

[13]  Mel S. Lee,et al.  Investigated the safety of intra-renal arterial transfusion of autologous CD34+ cells and time courses of creatinine levels, endothelial dysfunction biomarkers and micro-RNAs in chronic kidney disease patients-phase I clinical trial , 2017, Oncotarget.

[14]  Xiao Lin,et al.  Function, Role, and Clinical Application of MicroRNAs in Vascular Aging , 2016, BioMed research international.

[15]  Mel S. Lee,et al.  Shock Wave Therapy Enhances Angiogenesis through VEGFR2 Activation and Recycling , 2016, Molecular medicine.

[16]  J. Zhan,et al.  The PI3K/Akt/mTOR pathway regulates the replicative senescence of human VSMCs , 2016, Molecular and Cellular Biochemistry.

[17]  S. Chaturvedi,et al.  Stroke due to large vessel atherosclerosis: Five new things. , 2016, Neurology. Clinical practice.

[18]  M. Bennett,et al.  Vascular Smooth Muscle Cells in Atherosclerosis. , 2016, Circulation research.

[19]  R. Kitsis,et al.  MacroH2A1 and ATM Play Opposing Roles in Paracrine Senescence and the Senescence-Associated Secretory Phenotype. , 2015, Molecular cell.

[20]  Seahyoung Lee,et al.  Impact of miRNAs on cardiovascular aging , 2015, Journal of geriatric cardiology : JGC.

[21]  M. Bennett,et al.  Vascular Smooth Muscle Cell Senescence Promotes Atherosclerosis and Features of Plaque Vulnerability , 2015, Circulation.

[22]  A. Orekhov,et al.  Vascular smooth muscle cell in atherosclerosis , 2015, Acta physiologica.

[23]  W. Gong,et al.  MicroRNA‐214 Is Upregulated in Heart Failure Patients and Suppresses XBP1‐Mediated Endothelial Cells Angiogenesis , 2015, Journal of cellular physiology.

[24]  Francesca Orso,et al.  miR-214 as a key hub that controls cancer networks: small player, multiple functions. , 2015, The Journal of investigative dermatology.

[25]  Jia-ning Cao,et al.  MiR-214 regulates the pathogenesis of patients with coronary artery disease by targeting VEGF , 2015, Molecular and Cellular Biochemistry.

[26]  H. Redl,et al.  The role of microRNAs in cellular senescence and age-related conditions of cartilage and bone , 2015, Acta orthopaedica.

[27]  T. Masaki,et al.  Profile of microRNAs associated with aging in rat liver. , 2014, International journal of molecular medicine.

[28]  Y. Suh,et al.  Circulating miRNAs in ageing and ageing-related diseases. , 2014, Journal of genetics and genomics = Yi chuan xue bao.

[29]  L. Harries MicroRNAs as Mediators of the Ageing Process , 2014, Genes.

[30]  Ling-Qing Yuan,et al.  MiR-133a modulates osteogenic differentiation of vascular smooth muscle cells. , 2013, Endocrinology.

[31]  S. Dimmeler,et al.  MicroRNAs in age-related diseases , 2013, EMBO molecular medicine.

[32]  Pierre Roux,et al.  Eroded human telomeres are more prone to remain uncapped and to trigger a G2 checkpoint response , 2012, Nucleic acids research.

[33]  Ling-Qing Yuan,et al.  MicroRNA-204 regulates vascular smooth muscle cell calcification in vitro and in vivo. , 2012, Cardiovascular research.

[34]  Y. Suh,et al.  Send Orders of Reprints at Reprints@benthamscience.org Microrna in Aging: from Discovery to Biology , 2022 .

[35]  T. Wen,et al.  MicroRNAs as a novel cellular senescence regulator , 2012, Ageing Research Reviews.

[36]  M. Goumans,et al.  MicroRNA-214 inhibits angiogenesis by targeting Quaking and reducing angiogenic growth factor release. , 2012, Cardiovascular research.

[37]  Hadassa Klerman,et al.  QKI-Mediated Alternative Splicing of the Histone Variant MacroH2A1 Regulates Cancer Cell Proliferation , 2011, Molecular and Cellular Biology.

[38]  Li-Hsin Chen,et al.  microRNA and aging: A novel modulator in regulating the aging network , 2010, Ageing Research Reviews.

[39]  Mirko H. H. Schmidt,et al.  miR-126 and miR-126*: New Players in Cancer , 2010, TheScientificWorldJournal.

[40]  Ali M. Ardekani,et al.  The Role of MicroRNAs in Human Diseases , 2010, Avicenna journal of medical biotechnology.

[41]  D. Glavač,et al.  MicroRNA Microarray Expression Profiling in Human Myocardial Infarction , 2010, Disease markers.

[42]  R. Wong,et al.  Role of microRNA-214 in ginsenoside-Rg1-induced angiogenesis. , 2009, European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences.

[43]  P. Rothwell Atherothrombosis and ischaemic stroke , 2007, BMJ : British Medical Journal.

[44]  Sergio L. Schmukler,et al.  Emerging Market Instability : Do Sovereign Ratings Affect Country Risk and Stock Returns ? , 1997 .

[45]  M. Bennett,et al.  Vascular smooth muscle cell senescence in atherosclerosis. , 2006, Cardiovascular research.

[46]  T. Littlewood,et al.  Apoptosis of vascular smooth muscle cells induces features of plaque vulnerability in atherosclerosis , 2006, Nature Medicine.

[47]  P. Kirkpatrick,et al.  Vascular Smooth Muscle Cells Undergo Telomere-Based Senescence in Human Atherosclerosis: Effects of Telomerase and Oxidative Stress , 2006, Circulation research.

[48]  D. Bartel MicroRNAs Genomics, Biogenesis, Mechanism, and Function , 2004, Cell.

[49]  J. Y. Kim,et al.  Atherothrombotic cerebellar infarction: vascular lesion-MRI correlation of 31 cases. , 1999, Stroke.

[50]  H. Wellens,et al.  Biphasic pattern of cell turnover characterizes the progression from fatty streaks to ruptured human atherosclerotic plaques. , 1999, Cardiovascular research.

[51]  G. Evan,et al.  Apoptosis of human vascular smooth muscle cells derived from normal vessels and coronary atherosclerotic plaques. , 1995, The Journal of clinical investigation.

[52]  M. Ferguson,et al.  Proliferation in primary and restenotic coronary atherectomy tissue. Implications for antiproliferative therapy. , 1993, Circulation research.

[53]  Hilde van der Togt,et al.  Publisher's Note , 2003, J. Netw. Comput. Appl..

[54]  Aldons J. Lusis,et al.  Atherosclerosis : Vascular biology , 2000 .

[55]  Shu-xin Zhang Cartilage and Bone , 1999 .

[56]  D. Bohr THE VASCULAR SMOOTH MUSCLE CELL. , 1964, A listing of research in the cardiovascular field.

[57]  Stroke due to large vessel atherosclerosis , 2022 .