Terminating Tableaux for Modal Logic with Transitive Closure submitted

We present a terminating tableau system for the modal logic K∗. K∗ extends the basic modal logic K with a reflexive transitive closure operator for relations and is a proper fragment of propositional dynamic logic. We investigate two different approaches to achieve termination, namely chain-based blocking and pattern-based blocking. Pattern based-blocking has not been applied to a modal logic with a reflexive transitive closure operator. We have a modular completeness proof that adapts to both termination approaches. Extending completeness arguments for a related description logic, we establish a strengthened soundness property of our calculus that we call straightness. Using this property we are able to prove both verification and refutation soundness.

[1]  C. Lewis,et al.  A Survey Of Symbolic Logic , 1920 .

[2]  Alonzo Church,et al.  A formulation of the simple theory of types , 1940, Journal of Symbolic Logic.

[3]  Saul Kripke,et al.  A completeness theorem in modal logic , 1959, Journal of Symbolic Logic.

[4]  Saul A. Kripke,et al.  Semantical Analysis of Modal Logic I Normal Modal Propositional Calculi , 1963 .

[5]  Max J. Cresswell,et al.  A New Introduction to Modal Logic , 1998 .

[6]  Vaughan R. Pratt,et al.  SEMANTICAL CONSIDERATIONS ON FLOYD-HOARE LOGIC , 1976, FOCS 1976.

[7]  Peter B. Andrews An introduction to mathematical logic and type theory - to truth through proof , 1986, Computer science and applied mathematics.

[8]  Franz Baader Augmenting Concept Languages by Transitive Closure of Roles: An Alternative to Terminological Cycles , 1991, IJCAI.

[9]  Giuseppe De Giacomo,et al.  Combining Deduction and Model Checking into Tableaux and Algorithms for Converse-PDL , 2000, Inf. Comput..

[10]  Richard Spencer-Smith,et al.  Modal Logic , 2007 .

[11]  Ian Horrocks,et al.  A Tableaux Decision Procedure for SHOIQ , 2005, IJCAI.

[12]  Robert Goldblatt,et al.  Mathematical modal logic: A view of its evolution , 2003, J. Appl. Log..

[13]  Patrick Blackburn,et al.  Termination for Hybrid Tableaus , 2007, J. Log. Comput..

[14]  Bernhard Beckert,et al.  Dynamic Logic , 2007, The KeY Approach.

[15]  William M. Farmer,et al.  The seven virtues of simple type theory , 2008, J. Appl. Log..

[16]  Gert Smolka,et al.  Terminating Tableaux for Hybrid Logic with the Difference Modality and Converse , 2008, IJCAR.

[17]  Rajeev Goré,et al.  An On-the-fly Tableau-based Decision Procedure for PDL-satisfiability , 2009, Electron. Notes Theor. Comput. Sci..

[18]  Rajeev Goré,et al.  An Optimal On-the-Fly Tableau-Based Decision Procedure for PDL-Satisfiability , 2009, CADE.

[19]  Gert Smolka,et al.  Terminating Tableaux for SOQ with Number Restrictions on Transitive Roles , 2009, Description Logics.

[20]  Gert Smolka,et al.  Hybrid Tableaux for the Difference Modality , 2009, Electron. Notes Theor. Comput. Sci..

[21]  Gert Smolka,et al.  Terminating Tableau Systems for Hybrid Logic with Difference and Converse , 2009, J. Log. Lang. Inf..

[22]  Gert Smolka,et al.  Spartacus: A Tableau Prover for Hybrid Logic , 2010, Electron. Notes Theor. Comput. Sci..

[23]  Gert Smolka,et al.  Terminating Tableaux for Graded Hybrid Logic with Global Modalities and Role Hierarchies , 2009, TABLEAUX.