Electro-magneto-encephalography and fundamental solutions

[1]  E. M. Lifshitz,et al.  Electrodynamics of continuous media , 1961 .

[2]  A. Fokas,et al.  Electro-magneto-encephalography for a three-shell model: dipoles and beyond for the spherical geometry , 2009 .

[3]  Gang Bao,et al.  An Inverse Source Problem for Maxwell's Equations in Magnetoencephalography , 2002, SIAM J. Appl. Math..

[4]  D. Geselowitz On the magnetic field generated outside an inhomogeneous volume conductor by internal current sources , 1970 .

[5]  R. Ilmoniemi,et al.  Magnetoencephalography-theory, instrumentation, and applications to noninvasive studies of the working human brain , 1993 .

[6]  P. Morse,et al.  Methods of theoretical physics , 1955 .

[7]  J. B. Bronzan,et al.  The Magnetic Scalar Potential , 1971 .

[8]  George Dassios,et al.  On the non-uniqueness of the inverse MEG problem , 2005 .

[9]  Elaine Best,et al.  The magnetic field inside special conducting geometries due to internal current , 2004, IEEE Transactions on Biomedical Engineering.

[10]  O. D. Kellogg Foundations of potential theory , 1934 .

[11]  I. Gelfand,et al.  Inversion method for magnetoencephalography , 1996 .

[12]  D. Geselowitz On bioelectric potentials in an inhomogeneous volume conductor. , 1967, Biophysical journal.

[13]  George Dassios,et al.  Electric and Magnetic Activity of the Brain in Spherical and Ellipsoidal Geometry , 2009 .

[14]  A. S. Fokas,et al.  Methods for Solving Elliptic PDEs in Spherical Coordinates , 2008, SIAM J. Appl. Math..

[15]  D. B. Heppner,et al.  Considerations of quasi-stationarity in electrophysiological systems. , 1967, The Bulletin of mathematical biophysics.

[16]  A. S. Fokas,et al.  The unique determination of neuronal currents in the brain via magnetoencephalography , 2004 .