A 256-Kb Dual-${V}_{\rm CC}$ SRAM Building Block in 65-nm CMOS Process With Actively Clamped Sleep Transistor

This paper addresses the stability problem of SRAM cells used in dense last level caches (LLCs). In order for the LLC not to limit the minimum voltage at which a processor core can run, a dual-VCC 256-Kb SRAM building block is proposed. A fixed high-voltage supply powers the cache which allows the use of the smallest SRAM cell for maximum density, while a separate variable supply is used by the core for ultra-low-voltage operation using dynamic voltage and frequency (DVF). Implemented in a 65-nm bulk CMOS process, the block features low overhead embedded level shifters and an actively clamped sleep transistor for maximum cache leakage power reduction during standby. Measured results show that the proposed block runs at 4.2GHz while consuming 30 mW at 85degC and 1.2V supply. Furthermore, measurements across a wide range of process, voltage, temperature, and aging conditions indicate virtual ground clamping accuracy within a few millivolts of required cache standby VMIN. Extrapolating the 256-Kb block measurement results in a large 64-Mb LLC used in a dual-V CC processor gives 35% reduction in total processor power as compared with a single-VCC processor design running at a high supply voltage

[1]  C.H. Kim,et al.  PVT-aware leakage reduction for on-die caches with improved read stability , 2005, IEEE Journal of Solid-State Circuits.

[2]  K. Itoh,et al.  A deep sub-V, single power-supply SRAM cell with multi-V/sub T/, boosted storage node and dynamic load , 1996, 1996 Symposium on VLSI Circuits. Digest of Technical Papers.

[3]  K. Ishibashi,et al.  0.4-V logic-library-friendly SRAM array using rectangular-diffusion cell and delta-boosted-array voltage scheme , 2004, IEEE Journal of Solid-State Circuits.

[4]  N. Vallepalli,et al.  A 3-GHz 70-mb SRAM in 65-nm CMOS technology with integrated column-based dynamic power supply , 2005, IEEE Journal of Solid-State Circuits.

[5]  J. Jopling,et al.  Erratic fluctuations of sram cache vmin at the 90nm process technology node , 2005, IEEE InternationalElectron Devices Meeting, 2005. IEDM Technical Digest..

[6]  M. Khellah,et al.  Wordline & Bitline Pulsing Schemes for Improving SRAM Cell Stability in Low-Vcc 65nm CMOS Designs , 2006, 2006 Symposium on VLSI Circuits, 2006. Digest of Technical Papers..

[7]  K. Kushida,et al.  A low leakage SRAM macro with replica cell biasing scheme , 2005, Digest of Technical Papers. 2005 Symposium on VLSI Circuits, 2005..

[8]  N. Vallepalli,et al.  SRAM design on 65-nm CMOS technology with dynamic sleep transistor for leakage reduction , 2005, IEEE Journal of Solid-State Circuits.

[9]  Anne Meixner,et al.  Weak write test mode: an SRAM cell stability design for test technique , 1996, Proceedings International Test Conference 1996. Test and Design Validity.

[10]  Kaushik Roy,et al.  A forward body-biased low-leakage SRAM cache: device, circuit and architecture considerations , 2005, IEEE Transactions on Very Large Scale Integration (VLSI) Systems.

[11]  S. Kosonocky,et al.  A transregional CMOS SRAM with single, logic V/sub DD/ and dynamic power rails , 2004, 2004 Symposium on VLSI Circuits. Digest of Technical Papers (IEEE Cat. No.04CH37525).

[12]  Adam Brand,et al.  Low power SRAM techniques for handheld products , 2005, ISLPED '05. Proceedings of the 2005 International Symposium on Low Power Electronics and Design, 2005..

[13]  Kaushik Roy,et al.  Modeling of failure probability and statistical design of SRAM array for yield enhancement in nanoscaled CMOS , 2005, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[14]  T. Karnik,et al.  Area-efficient linear regulator with ultra-fast load regulation , 2005, IEEE Journal of Solid-State Circuits.