Geographical structure of endosymbiotic bacteria hosted by Bathymodiolus mussels at eastern Pacific hydrothermal vents

[1]  J. Mak,et al.  Identification and ultrastructural characterization of Acanthamoeba bacterial endocytobionts belonging to the Alphaproteobacteria class , 2018, PloS one.

[2]  R. Vrijenhoek,et al.  Geographical structure of endosymbiotic bacteria hosted by Bathymodiolus mussels at eastern Pacific hydrothermal vents , 2017, BMC Evolutionary Biology.

[3]  R. Vrijenhoek,et al.  Population subdivision of hydrothermal vent polychaete Alvinella pompejana across equatorial and Easter Microplate boundaries , 2016, BMC Evolutionary Biology.

[4]  T. Kuroiwa,et al.  Surfing the vegetal pole in a small population: extracellular vertical transmission of an 'intracellular' deep-sea clam symbiont , 2016, Royal Society Open Science.

[5]  S. Duperron,et al.  Estimating Symbiont Abundances and Gill Surface Areas in Specimens of the Hydrothermal Vent Mussel Bathymodiolus puteoserpentis Maintained in Pressure Vessels , 2016, Front. Mar. Sci..

[6]  T. Maruyama,et al.  Heterogeneous composition of key metabolic gene clusters in a vent mussel symbiont population , 2015, The ISME Journal.

[7]  C. Rodrigues,et al.  Fickle or Faithful: The Roles of Host and Environmental Context in Determining Symbiont Composition in Two Bathymodioline Mussels , 2015, PloS one.

[8]  R. Vrijenhoek,et al.  Intergradation between discrete lineages of Tevnia jerichonana, a deep-sea hydrothermal vent tubeworm , 2015 .

[9]  M. Wagner,et al.  Endosymbionts escape dead hydrothermal vent tubeworms to enrich the free-living population , 2015, Proceedings of the National Academy of Sciences.

[10]  C. Cavanaugh,et al.  Evidence for horizontal transmission from multilocus phylogeny of deep-sea mussel (Mytilidae) symbionts. , 2014, Environmental microbiology.

[11]  N. Dubilier,et al.  Forever competent: deep-sea bivalves are colonized by their chemosynthetic symbionts throughout their lifetime. , 2014, Environmental microbiology.

[12]  P. Tiffin,et al.  Advances and limits of using population genetics to understand local adaptation. , 2014, Trends in ecology & evolution.

[13]  U. Mathesius,et al.  Phytohormone Regulation of Legume-Rhizobia Interactions , 2014, Journal of Chemical Ecology.

[14]  M. Albà,et al.  Uncovering adaptive evolution in the human lineage , 2014, BMC Genomics.

[15]  S. Duperron,et al.  Settled, symbiotic, then sexually mature: adaptive developmental anatomy in the deep-sea, chemosymbiotic mussel Idas modiolaeformis , 2014 .

[16]  S. Duperron,et al.  Direct evidence for maternal inheritance of bacterial symbionts in small deep-sea clams (Bivalvia: Vesicomyidae) , 2014, Naturwissenschaften.

[17]  S. Ho,et al.  Adaptive radiation of chemosymbiotic deep-sea mussels , 2013, Proceedings of the Royal Society B: Biological Sciences.

[18]  Shawn W. Polson,et al.  Diffuse flow environments within basalt- and sediment-based hydrothermal vent ecosystems harbor specialized microbial communities , 2013, Front. Microbiol..

[19]  S. Duperron,et al.  Physical Proximity May Promote Lateral Acquisition of Bacterial Symbionts in Vesicomyid Clams , 2013, PloS one.

[20]  N. Dubilier,et al.  Shift from widespread symbiont infection of host tissues to specific colonization of gills in juvenile deep-sea mussels , 2013, The ISME Journal.

[21]  C. Cavanaugh,et al.  Phylogenetic relationships of hydrothermal vent mussels (Bathymodiolinae) and their symbionts , 2013 .

[22]  R. Vrijenhoek,et al.  A hybrid zone between Bathymodiolus mussel lineages from eastern Pacific hydrothermal vents , 2013, BMC Evolutionary Biology.

[23]  W. Cho,et al.  PyroTrimmer: a software with GUI for pre-processing 454 amplicon sequences , 2012, Journal of Microbiology.

[24]  Raymond W. Lee,et al.  Evidence for the role of endosymbionts in regional-scale habitat partitioning by hydrothermal vent symbioses , 2012, Proceedings of the National Academy of Sciences.

[25]  N. Dubilier,et al.  Genetic Connectivity between North and South Mid-Atlantic Ridge Chemosynthetic Bivalves and Their Symbionts , 2012, PloS one.

[26]  P. Meirmans,et al.  The trouble with isolation by distance , 2012, Molecular ecology.

[27]  Shane S. Sturrock,et al.  Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data , 2012, Bioinform..

[28]  C. Santamaria,et al.  Molecular Systematics of the Deep-Sea Hydrothermal Vent Endemic Brachyuran Family Bythograeidae: A Comparison of Three Bayesian Species Tree Methods , 2012, PloS one.

[29]  A. Boetius,et al.  Relative abundances of methane‐ and sulphur‐oxidising symbionts in the gills of a cold seep mussel and link to their potential energy sources , 2011, Geobiology.

[30]  G. Desbrosses,et al.  Root nodulation: a paradigm for how plant-microbe symbiosis influences host developmental pathways. , 2011, Cell host & microbe.

[31]  R. Amann,et al.  Hydrogen is an energy source for hydrothermal vent symbioses , 2011, Nature.

[32]  Rob Knight,et al.  UCHIME improves sensitivity and speed of chimera detection , 2011, Bioinform..

[33]  Mitch D. Day,et al.  Microbial Communities as Experimental Units , 2011, Bioscience.

[34]  R. Vrijenhoek,et al.  Genetic diversity and demographic instability in Riftia pachyptila tubeworms from eastern Pacific hydrothermal vents , 2011, BMC Evolutionary Biology.

[35]  R. Vrijenhoek Genetic diversity and connectivity of deep‐sea hydrothermal vent metapopulations , 2010, Molecular ecology.

[36]  L. Excoffier,et al.  Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows , 2010, Molecular ecology resources.

[37]  S. Duperron The Diversity of Deep-Sea Mussels and Their Bacterial Symbioses , 2010 .

[38]  R. Vrijenhoek Genetics and Evolution of Deep-Sea Chemosynthetic Bacteria and Their Invertebrate Hosts , 2010 .

[39]  C. Young,et al.  Spawning, Development, and the Duration of Larval Life in a Deep-Sea Cold-Seep Mussel , 2009, The Biological Bulletin.

[40]  N. Dubilier,et al.  Symbiotic diversity in marine animals: the art of harnessing chemosynthesis , 2008, Nature Reviews Microbiology.

[41]  A. Warén,et al.  DNA Barcoding of Lepetodrilus Limpets Reveals Cryptic Species , 2008 .

[42]  R. Vrijenhoek,et al.  Absence of Cospeciation Between Deep-Sea Mytilids and Their Thiotrophic Endosymbionts , 2008 .

[43]  S. Duperron,et al.  Unexpected co-occurrence of six bacterial symbionts in the gills of the cold seep mussel Idas sp. (Bivalvia: Mytilidae). , 2008, Environmental microbiology.

[44]  J. Tiedje,et al.  Naïve Bayesian Classifier for Rapid Assignment of rRNA Sequences into the New Bacterial Taxonomy , 2007, Applied and Environmental Microbiology.

[45]  W. J. Jones,et al.  Subtype Variation Among Bacterial Endosymbionts of Tubeworms (Annelida: Siboglinidae) from the Gulf of California , 2007, The Biological Bulletin.

[46]  T. Shank,et al.  Off-axis symbiosis found: Characterization and biogeography of bacterial symbionts of Bathymodiolus mussels from Lost City hydrothermal vents. , 2006, Environmental microbiology.

[47]  G. Massoth,et al.  Hydrothermal Vent Geology and Biology at Earth’s Fastest Spreading Rates , 2006 .

[48]  C. Fisher,et al.  Horizontal endosymbiont transmission in hydrothermal vent tubeworms , 2006, Nature.

[49]  R. De Wit,et al.  'Everything is everywhere, but, the environment selects'; what did Baas Becking and Beijerinck really say? , 2006, Environmental microbiology.

[50]  D. Huson,et al.  Application of phylogenetic networks in evolutionary studies. , 2006, Molecular biology and evolution.

[51]  S. Hallam,et al.  Characterization of Symbiont Populations in Life-History Stages of Mussels From Chemosynthetic Environments , 2005, The Biological Bulletin.

[52]  R. Amann,et al.  Dual Symbiosis in a Bathymodiolus sp. Mussel from a Methane Seep on the Gabon Continental Margin (Southeast Atlantic): 16S rRNA Phylogeny and Distribution of the Symbionts in Gills , 2005, Applied and Environmental Microbiology.

[53]  H. Ochman,et al.  Evolution in bacteria: Evidence for a universal substitution rate in cellular genomes , 1987, Journal of Molecular Evolution.

[54]  P. Meirmans,et al.  genotype and genodive: two programs for the analysis of genetic diversity of asexual organisms , 2004 .

[55]  R. Vrijenhoek,et al.  Distinct patterns of genetic differentiation among annelids of eastern Pacific hydrothermal vents , 2004, Molecular ecology.

[56]  S. Hallam,et al.  Environmental Acquisition of Thiotrophic Endosymbionts by Deep-Sea Mussels of the Genus Bathymodiolus , 2003, Applied and Environmental Microbiology.

[57]  R. Vrijenhoek,et al.  Cytonuclear disequilibrium in a hybrid zone involving deep‐sea hydrothermal vent mussels of the genus Bathymodiolus , 2003, Molecular ecology.

[58]  S. West,et al.  Host sanctions and the legume–rhizobium mutualism , 2003, Nature.

[59]  L. Hurtado,et al.  Two new species of hydrothermal vent crabs of the genus Bythograea from the southern East Pacific Rise and from the Galapagos Rift (Crustacea Decapoda Brachyura Bythograeidae). , 2003, Comptes rendus biologies.

[60]  Richard A. Lutz,et al.  Coupling of Bacterial Endosymbiont and Host Mitochondrial Genomes in the Hydrothermal Vent Clam Calyptogena magnifica , 2003, Applied and Environmental Microbiology.

[61]  R. Vrijenhoek,et al.  Dispersal barriers and isolation among deep‐sea mussel populations (Mytilidae: Bathymodiolus) from eastern Pacific hydrothermal vents , 2002, Molecular ecology.

[62]  Michael Wagner,et al.  Endosymbiotic sulphate-reducing and sulphide-oxidizing bacteria in an oligochaete worm , 2001, Nature.

[63]  K. V. Damm Chemistry of hydrothermal vent fluids from 9°–10°N, East Pacific Rise: “Time zero,” the immediate posteruptive period , 2000 .

[64]  R. Vrijenhoek,et al.  Genetic Variation among Endosymbionts of Widely Distributed Vestimentiferan Tubeworms , 2000, Applied and Environmental Microbiology.

[65]  N. Moran,et al.  Calibrating bacterial evolution. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[66]  J. Lupton Hydrothermal helium plumes in the Pacific Ocean , 1998 .

[67]  N. Moran,et al.  Evolutionary rates for tuf genes in endosymbionts of aphids. , 1998, Molecular biology and evolution.

[68]  R. Vrijenhoek Gene flow and genetic diversity in naturally fragmented metapopulations of deep-sea hydrothermal vent animals. , 1997, The Journal of heredity.

[69]  J. Auzende,et al.  Mineral and gas chemistry of hydrothermal fluids on an ultrafast spreading ridge: East Pacific Rise, 17° to 19°S (Naudur cruise, 1993) phase separation processes controlled by volcanic and tectonic activity , 1996 .

[70]  J. Francheteau,et al.  Large rotation of the Easter microplate as evidenced by oriented paleomagnetic samples from the ocean floor , 1995 .

[71]  R. Vrijenhoek,et al.  Extensive gene flow among mytilid (Bathymodiolus thermophilus) populations from hydrothermal vents of the eastern Pacific , 1995 .

[72]  Erko Stackebrandt,et al.  Taxonomic Note: A Place for DNA-DNA Reassociation and 16S rRNA Sequence Analysis in the Present Species Definition in Bacteriology , 1994 .

[73]  C. Cavanaugh Microbial Symbiosis: Patterns of Diversity in the Marine Environment , 1994 .

[74]  S. Giovannoni,et al.  Transovarial inheritance of endosymbiotic bacteria in clams inhabiting deep-sea hydrothermal vents and cold seeps. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[75]  Charles R. Fisher,et al.  The biology of hydrothermal vent animals: physiology, biochemistry, and autotrophic symbioses , 1992 .

[76]  D. Naar,et al.  Tectonic evolution of the Easter Microplate , 1991 .

[77]  N. Imasato,et al.  Diagnostic calculation for circulation and water mass movement in the deep Pacific , 1991 .

[78]  R. Searle,et al.  Comprehensive sonar imaging of the Easter microplate , 1989, Nature.

[79]  J. Childress,et al.  Physiology, morphology, and biochemical composition of Riftia pachyptila at Rose Garden in 1985 , 1988 .

[80]  G J Olsen,et al.  Sulfur-oxidizing bacterial endosymbionts: analysis of phylogeny and specificity by 16S rRNA sequences , 1988, Journal of bacteriology.

[81]  A. C. Campbell,et al.  Chemical controls on the composition of vent fluids at 13°–11°N and 21°N, East Pacific Rise , 1988 .

[82]  M. Nei,et al.  Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions. , 1986, Molecular biology and evolution.