Large-scale mapping of boreal forest in Siberia

Siberia's boreal forests represent an economically and ecologically precious resource, a significant part of which is not monitored on a regular basis. Synthetic aperture radars (SARs), with their sensitivity to forest biomass, offer mapping capabilities that could provide valuable up-to-date information, for example about fire damage or logging activity. The European Commission SIBERIA project had the aim of mapping an area of approximately 1 million km2 in Siberia using SAR data from two satellite sources: the tandem mission of the European Remote Sensing Satellites ERS-1/2 and the Japanese Earth Resource Satellite JERS-1. Mosaics of ERS tandem interferometric coherence and JERS backscattering coefficient show the wealth of information contained in these data but they also show large differences in radar response between neighbouring images. To create one homogeneous forest map, adaptive methods which are able to account for brightness changes due to environmental effects were required. In this paper an adaptive empirical model to determine growing stock volume classes using the ERS tandem coherence and the JERS backscatter data is described. For growing stock volume classes up to 80 m3/ha, accuracies of over 80% are achieved for over a hundred ERS frames at a spatial resolution of 50 m.

[1]  Kamal Sarabandi,et al.  Michigan microwave canopy scattering model , 1990 .

[2]  Juha Hyyppä,et al.  The seasonal behavior of interferometric coherence in boreal forest , 2001, IEEE Trans. Geosci. Remote. Sens..

[3]  Jan Askne,et al.  Forest Insar Decorrelation and Classification Properties , 1997 .

[4]  H. Balzter,et al.  Combining unsupervised and knowledge-based methods in large-scale forest classification , 2000, IGARSS 2000. IEEE 2000 International Geoscience and Remote Sensing Symposium. Taking the Pulse of the Planet: The Role of Remote Sensing in Managing the Environment. Proceedings (Cat. No.00CH37120).

[5]  Marc L. Imhoff,et al.  Radar backscatter and biomass saturation: ramifications for global biomass inventory , 1995, IEEE Transactions on Geoscience and Remote Sensing.

[6]  Thuy Le Toan,et al.  Multitemporal ERS SAR analysis applied to forest mapping , 2000, IEEE Trans. Geosci. Remote. Sens..

[7]  Steve Yionoulis,et al.  Geopotential Research Mission: Status Report , 1985, IEEE Transactions on Geoscience and Remote Sensing.

[8]  A. Luckman,et al.  The use of coherence information from ERS tandem pairs for determining forest stock volume in SIBERIA , 2000, IGARSS 2000. IEEE 2000 International Geoscience and Remote Sensing Symposium. Taking the Pulse of the Planet: The Role of Remote Sensing in Managing the Environment. Proceedings (Cat. No.00CH37120).

[10]  João Roberto dos Santos,et al.  Savanna and tropical rainforest biomass estimation and spatialization using JERS-1 data , 2002 .

[11]  Christiane Schmullius,et al.  Information content of ERS SAR interferometric products for forest classification in SIBERIA: a case study over the Bolshemurtinskii forest enterprise , 2000, IGARSS 2000. IEEE 2000 International Geoscience and Remote Sensing Symposium. Taking the Pulse of the Planet: The Role of Remote Sensing in Managing the Environment. Proceedings (Cat. No.00CH37120).

[12]  Jakob J. van Zyl,et al.  The effect of topography on radar scattering from vegetated areas , 1992, IEEE Trans. Geosci. Remote. Sens..

[13]  S. Saatchi,et al.  The Global Rain Forest Mapping project - A review , 2000 .

[14]  H. Balzter Forest mapping and monitoring with interferometric synthetic aperture radar (InSAR) , 2001 .

[15]  A. Roth,et al.  Operational interferometric SAR products , 1998, IGARSS '98. Sensing and Managing the Environment. 1998 IEEE International Geoscience and Remote Sensing. Symposium Proceedings. (Cat. No.98CH36174).

[16]  R. Colwell Remote sensing of the environment , 1980, Nature.

[17]  Anatoly Shvidenko,et al.  Is Sustainable Development of the Russian Forest Sector Possible , 1998 .

[18]  U. Wegmuller,et al.  JERS SAR processing for the boreal forest mapping project SIBERIA , 1999, IEEE 1999 International Geoscience and Remote Sensing Symposium. IGARSS'99 (Cat. No.99CH36293).

[19]  Thuy Le Toan,et al.  On the relationships between radar measurements and forest structure and biomass , 2002 .

[20]  M. Honzak,et al.  Tropical Forest Biomass Density Estimation Using JERS-1 SAR: Seasonal Variation, Confidence Limits, and Application to Image Mosaics , 1998 .

[21]  David G. Goodenough,et al.  Slope-Aspect Effects in Synthetic Aperture Radar Imagery , 1985 .

[22]  François Houllier,et al.  Retrieval biomass of a large Venezuelan pine plantation using JERS-1 SAR data. Analysis of forest structure impact on radar signature , 2002 .

[23]  Lars M. H. Ulander,et al.  Repeat-pass SAR interferometry over forested terrain , 1995, IEEE Transactions on Geoscience and Remote Sensing.

[24]  Lars M. H. Ulander,et al.  C-band repeat-pass interferometric SAR observations of the forest , 1997, IEEE Trans. Geosci. Remote. Sens..

[25]  Kamal Sarabandi,et al.  Estimation of forest biophysical characteristics in Northern Michigan with SIR-C/X-SAR , 1995, IEEE Trans. Geosci. Remote. Sens..

[26]  Urs Wegmüller,et al.  SAR interferometric signatures of forest , 1995, IEEE Trans. Geosci. Remote. Sens..

[27]  Sassan Saatchi,et al.  Cornerstones and epilogue of the GRFM Africa project: a gallery of regional scale vegetation maps , 2002, IEEE International Geoscience and Remote Sensing Symposium.

[28]  Martti Hallikainen,et al.  Retrieval of biomass in boreal forests from multitemporal ERS-1 and JERS-1 SAR images , 1999, IEEE Trans. Geosci. Remote. Sens..

[29]  D. Gaveau,et al.  Modelling the dynamics of ERS-1/2 coherence with increasing woody biomass over boreal forests , 2002 .

[30]  Masanobu Shimada Radiometric and geometric calibration of JERS-1 SAR , 1996 .

[31]  Maurizio Santoro,et al.  Stem volume retrieval in boreal forests from ERS-1/2 interferometry , 2002 .

[32]  Sassan Saatchi,et al.  The Global Rain Forest Mapping Project JERS-1 radar mosaic of tropical Africa: development and product characterization aspects , 2000, IEEE Trans. Geosci. Remote. Sens..

[33]  Paul J. Curran,et al.  JERS-1/SAR backscatter and its relationship with biomass of regenerating forests , 2000 .

[34]  J. Fransson Estimation of stem volume in boreal forests using ERS-1 C- and JERS-1 L-band SAR data , 1999 .

[35]  Martti Hallikainen,et al.  Multitemporal behavior of L- and C-band SAR observations of boreal forests , 1999, IEEE Trans. Geosci. Remote. Sens..

[36]  C. Schmullius,et al.  Closing the Gap - a Siberian Boreal Forest map with ERS-1/2 and JERS-1 , 1997 .

[37]  Howard A. Zebker,et al.  Decorrelation in interferometric radar echoes , 1992, IEEE Trans. Geosci. Remote. Sens..

[38]  F. Henderson,et al.  Principles and Applications of Imaging Radar , 1998 .

[39]  Malcolm Davidson,et al.  Accuracy assessment of a large-scale forest cover map of central Siberia from synthetic aperture radar , 2002 .

[40]  Christiane Schmullius,et al.  SIBERIA-results from the IGBP boreal forest transect , 1999, IEEE 1999 International Geoscience and Remote Sensing Symposium. IGARSS'99 (Cat. No.99CH36293).

[41]  J. Hyyppä,et al.  Accuracy comparison of various remote sensing data sources in the retrieval of forest stand attributes , 2000 .

[42]  Urs Wegmüller,et al.  Landuse mapping with ERS SAR interferometry , 2000, IEEE Trans. Geosci. Remote. Sens..

[43]  Heiko Balzter,et al.  Forest woody biomass classification with satellite-based radar coherence over 900 000 km2 in Central Siberia , 2003 .

[44]  Robert N. Colwell,et al.  Manual of remote sensing , 1983 .

[45]  Jiancheng Shi,et al.  The effect of topography on SAR calibration , 1993, IEEE Trans. Geosci. Remote. Sens..

[46]  J.T. Pulliainen,et al.  Seasonal dynamics of C-band backscatter of boreal forests with applications to biomass and soil moisture estimation , 1996, IEEE Trans. Geosci. Remote. Sens..