Seismological implications of a lithospheric low seismic velocity zone in Mars

Most seismological models for the interior of Mars lack an upper mantle low velocity zone. However, there is expected to be a large thermal gradient across the stagnant conductive lid (lithosphere) of Mars. This gradient should tend to decrease elastic wave velocities with increasing depth, with this effect dominating the opposing tendency caused by increasing pressure with depth because Mars has low gravity. An upper mantle lithosphere with a low velocity zone (LVZ) beneath a thin high velocity “seismic lid” is thus predicted. The upcoming NASA InSight mission includes a three-component seismometer, which should provide the first opportunity to directly detect any lithospheric LVZ in Mars. Seismic wavefields expected for Mars mantle velocity structures with or without a strong LVZ are very distinct. The LVZ models predict shadow zones for high-frequency seismic body wave phases such as P, S, PP and SS, etc. The most diagnostic waves that can be used to evaluate presence of a lithospheric LVZ given a single seismometer are intermediate-period global surface waves, which travel along the great circle from a seismic source to the seismometer. An LVZ produces distinctive dispersion, with a Rayleigh wave Airy phase around 100 s period and very different surface wave seismograms compared to a model with no LVZ. Even a single observation of long-period surface waves from a known range can be diagnostic of the lithospheric structure.

[1]  J. Kley,et al.  Towards a Dynamical Model of Mars’ Evolution , 2010 .

[2]  Robert J. Geller,et al.  Computation of synthetic seismograms and their partial derivatives for heterogeneous media with arbitrary natural boundary conditions using the Direct Solution Method , 1994 .

[3]  Robert J. Geller,et al.  Highly accurate P-SV complete synthetic seismograms using modified DSM operators , 1996 .

[4]  F. Nimmo,et al.  Thermal evolution of the Martian core: Implications for an early dynamo , 2004 .

[5]  B. Gutenberg On the layer of relatively low wave velocity at a depth of about 80 kilometers , 1948 .

[6]  V. Sautter,et al.  The petrological expression of early Mars volcanism , 2013 .

[7]  J. Wookey,et al.  Estimates of seismic activity in the Cerberus Fossae region of Mars , 2013 .

[8]  D. Gault,et al.  Seismic effects from major basin formations on the moon and mercury , 1975 .

[9]  T. V. Gudkova,et al.  Construction of Martian Interior Model , 2005 .

[10]  J. Connolly,et al.  Constraining the Composition and Thermal State of Mars , 2007 .

[11]  J. Sleewaegen,et al.  Interior structure of terrestrial planets : Modeling Mars' mantle and its electromagnetic, geodetic, and seismic properties , 2005 .

[12]  Global Surveyor Topography and Gravity Internal Structure and Early Thermal Evolution of Mars from Mars , 2011 .

[13]  Maria T. Zuber,et al.  The crust and mantle of Mars , 2001, Nature.

[14]  Don L. Anderson,et al.  Seismology on Mars , 1977 .

[15]  David E. Smith,et al.  Improved estimate of tidal dissipation within Mars from MOLA observations of the shadow of Phobos , 2005 .

[16]  Kenneth L. Tanaka,et al.  A Prediction of Mars Seismicity from Surface Faulting , 1992, Science.

[17]  Doris Breuer,et al.  Asymmetric thermal evolution of the Moon , 2012 .

[18]  T. Gudkova,et al.  Mars: interior structure and excitation of free oscillations , 2004 .

[19]  F. Nimmo,et al.  Dissipation at tidal and seismic frequencies in a melt‐free, anhydrous Mars , 2013 .

[20]  I. Jackson,et al.  Grainsize-sensitive viscoelastic relaxation in olivine: Towards a robust laboratory-based model for seismological application , 2010 .

[21]  P. Lognonné,et al.  INSIGHT and single-station broadband seismology: From signal and noise to interior structure determination , 2012 .

[22]  L. Stixrude,et al.  Mineralogy and elasticity of the oceanic upper mantle: Origin of the low‐velocity zone , 2005 .

[23]  C. Sotin,et al.  Theoretical seismic models of Mars : the importance of the iron content of the mantle , 1996 .

[24]  Ernst Hauber,et al.  Working models for spatial distribution and level of Mars' seismicity , 2006 .

[25]  James N. Brune,et al.  The polar phase shift of surface waves on a sphere , 1961 .

[26]  O. Gasnault,et al.  Thermal history of Mars inferred from orbital geochemistry of volcanic provinces , 2011, Nature.

[27]  P. Melchior Physics of the Earth's interior , 1982 .

[28]  H. Waenke,et al.  The bulk composition, mineralogy and internal structure of Mars , 1992 .

[29]  Tilman Spohn,et al.  The interior structure of Mars: Implications from SNC meteorites , 1997 .

[30]  Y. Fei,et al.  Density profile of an SNC model Martian interior and the moment-of-inertia factor of Mars , 1998 .

[31]  Véronique Dehant,et al.  Geodesy constraints on the interior structure and composition of Mars , 2011 .

[32]  B. Romanowicz,et al.  Long-period seismology on Europa: 2. Predicted seismic response , 2006 .

[33]  Yasuo Satô,et al.  Attenuation, dispersion, and the wave guide of the G wave , 1958 .

[34]  James Wookey,et al.  Seismic detection of meteorite impacts on Mars , 2011 .

[35]  K. Fuchs,et al.  Computation of Synthetic Seismograms with the Reflectivity Method and Comparison with Observations , 1971 .

[36]  M. Menvielle,et al.  Complementarity of seismological and electromagnetic sounding methods for constraining the structure of the Martian mantle , 2000 .

[37]  L. Chin,et al.  Erratum: Telomere dysfunction induces metabolic and mitochondrial compromise (Nature (2011) 470 (359-365)) , 2011 .

[38]  Masaki Ogawa,et al.  Numerical models of Martian mantle evolution induced by magmatism and solid‐state convection beneath stagnant lithosphere , 2011 .

[39]  J W Head,et al.  Internal structure and early thermal evolution of Mars from Mars Global Surveyor topography and gravity. , 2000, Science.

[40]  Don L. Anderson,et al.  Scientific rationale and requirements for a global seismic network on Mars. Report of a workshop. , 1991 .

[41]  W. Folkner,et al.  Fluid Core Size of Mars from Detection of the Solar Tide , 2003, Science.

[42]  Alfred S. McEwen,et al.  The current martian cratering rate , 2010 .

[43]  S. Franck,et al.  Seismic velocity models for an internally asymmetric Mars , 1994 .

[44]  Y. Fei,et al.  Mineralogy of the Martian interior up to core‐mantle boundary pressures , 1997 .

[45]  D. L. Anderson,et al.  Theoretical models for Mars and their seismic properties , 1978 .

[46]  Mark S. Robinson,et al.  Ferrous oxide in Mercury's crust and mantle , 2001 .

[47]  V. Červený,et al.  Seismic Ray Theory , 2001, Encyclopedia of Solid Earth Geophysics.

[48]  Jean-Paul Poirier,et al.  The age of the inner core , 2001 .

[49]  D. L. Anderson Theory of Earth , 2014 .

[50]  M. Toksöz,et al.  Thermal history and evolution of Mars , 1978 .

[51]  Sami W. Asmar,et al.  InSight: A Discovery Class Mission to Explore the Interior of Mars , 2014 .