The Number of Embeddings of Minimally Rigid Graphs

(MATH) Rigid frameworks in some Euclidian space are embedded graphs having a unique local realization (up to Euclidian motions) for the given edge lengths, although globally they may have several. We study first the number of distinct planar embeddings of rigid graphs with n vertices. We show that, modulo planar rigid motions, this number is at most $2n-4\choose n-2 \approx 4n. We also exhibit several families which realize lower bounds of the order of 2n, 2.21n and 2.88n.(MATH) For the upper bound we use techniques from complex algebraic geometry, based on the (projective) Cayley-Menger variety CM 2,n(C)\subset P_n\choose 2-1(C)$ over the complex numbers C. In this context, point configurations are represented by coordinates given by squared distances between all pairs of points. Sectioning the variety with 2n-4 hyperplanes yields at most deg(CM 2,n) zero-dimensional components, and one finds this degree to be D 2,n =\frac122n-4\choose n-2$. The lower bounds are related to inductive constructions of minimally rigid graphs via Henneberg sequences.(MATH) The same approach works in higher dimensions. In particular we show that it leads to an upper bound of 2 D^3,n= \frac2^n-3n-2n-6\choosen-3$ for the number of spatial embeddings with generic edge lengths of the $1$-skeleton of a simplicial polyhedron, up to rigid motions.

[1]  J. Graver,et al.  Graduate studies in mathematics , 1993 .

[2]  Ciprian S. Borcea Point Configurations and Cayley-Menger Varieties , 2002, math/0207110.

[3]  R. Connelly In Handbook of Convex Geometry , 1993 .

[4]  J. Milnor On the Betti numbers of real varieties , 1964 .

[5]  G. Laman On graphs and rigidity of plane skeletal structures , 1970 .

[6]  G. Rota Geometry I and II: M. Berger, Springer-Verlag, 1987, 427 and 405 pp , 1991 .

[7]  Walter Whiteley,et al.  Some matroids from discrete applied geometry , 1996 .

[8]  Bruce Hendrickson,et al.  Conditions for Unique Graph Realizations , 1992, SIAM J. Comput..

[9]  Gert Vegter,et al.  In handbook of discrete and computational geometry , 1997 .

[10]  Piotr Pragacz,et al.  Classes of Determinantal Varieties Associated with Symmetric and Skew-Symmetric Matrices , 1982 .

[11]  E. Steinitz,et al.  Vorlesungen über die Theorie der Polyeder unter Einfluss der Elemente der Topologie , 1934 .

[12]  Gordon M. Crippen,et al.  Distance Geometry and Molecular Conformation , 1988 .

[13]  John Canny,et al.  The complexity of robot motion planning , 1988 .

[14]  H. Gluck Almost all simply connected closed surfaces are rigid , 1975 .

[15]  Saugata Basu,et al.  Different bounds on the different Betti numbers of semi-algebraic sets , 2001, SCG '01.

[16]  B. Hendrickson The Molecular Problem: Determining Conformation from Pairwise Distances , 1990 .

[17]  T. Willmore Algebraic Geometry , 1973, Nature.

[18]  Joe Harris,et al.  On symmetric and skew-symmetric determinantal varieties , 1984 .

[19]  Michel Deza,et al.  Geometry of cuts and metrics , 2009, Algorithms and combinatorics.

[20]  Walter Whiteley,et al.  Rigidity and scene analysis , 2004, Handbook of Discrete and Computational Geometry, 2nd Ed..

[21]  Tibor Jordán,et al.  A proof of Connelly's conjecture on 3-connected circuits of the rigidity matroid , 2003, J. Comb. Theory, Ser. B.

[22]  Leonard M. Blumenthal,et al.  Theory and applications of distance geometry , 1954 .

[23]  M. Dehn,et al.  Über die Starrheit konvexer Polyeder , 1916 .

[24]  S. Basu,et al.  Algorithms in real algebraic geometry , 2003 .

[25]  Robert L. Norton,et al.  Design of Machinery , 1991 .

[26]  Lebrecht Henneberg,et al.  Die graphische Statik der Starren Systeme , 1911 .

[27]  Ileana Streinu,et al.  The Number of Embeddings of Minimally Rigid Graphs , 2004, Discret. Comput. Geom..

[28]  G. M. Crippen,et al.  Distance geometry and conformational calculations , 1981 .