GeniePath: Graph Neural Networks with Adaptive Receptive Paths

We present, GeniePath, a scalable approach for learning adaptive receptive fields of neural networks defined on permutation invariant graph data. In GeniePath, we propose an adaptive path layer consists of two complementary functions designed for breadth and depth exploration respectively, where the former learns the importance of different sized neighborhoods, while the latter extracts and filters signals aggregated from neighbors of different hops away. Our method works in both transductive and inductive settings, and extensive experiments compared with competitive methods show that our approaches yield state-of-the-art results on large graphs.

[1]  M. V. Rossum,et al.  In Neural Computation , 2022 .

[2]  Michael I. Jordan,et al.  Advances in Neural Information Processing Systems 30 , 1995 .

[3]  Fan Chung,et al.  Spectral Graph Theory , 1996 .

[4]  Jürgen Schmidhuber,et al.  Long Short-Term Memory , 1997, Neural Computation.

[5]  김삼묘,et al.  “Bioinformatics” 특집을 내면서 , 2000 .

[6]  Mikhail Belkin,et al.  Laplacian Eigenmaps and Spectral Techniques for Embedding and Clustering , 2001, NIPS.

[7]  장윤희,et al.  Y. , 2003, Industrial and Labor Relations Terms.

[8]  A. ADoefaa,et al.  ? ? ? ? f ? ? ? ? ? , 2003 .

[9]  M. Ehler Applied and Computational Harmonic Analysis , 2008 .

[10]  Lise Getoor,et al.  Collective Classification in Network Data , 2008, AI Mag..

[11]  Pierre Vandergheynst,et al.  Wavelets on Graphs via Spectral Graph Theory , 2009, ArXiv.

[12]  Virgílio A. F. Almeida,et al.  Proceedings of the 22nd international conference on World Wide Web , 2013, WWW 2013.

[13]  Alexander J. Smola,et al.  Distributed large-scale natural graph factorization , 2013, WWW.

[14]  Joan Bruna,et al.  Spectral Networks and Locally Connected Networks on Graphs , 2013, ICLR.

[15]  Endong Wang,et al.  Intel Math Kernel Library , 2014 .

[16]  Vassilis Kostakos Temporal Graphs , 2014, Encyclopedia of Social Network Analysis and Mining.

[17]  Steven Skiena,et al.  DeepWalk: online learning of social representations , 2014, KDD.

[18]  Jimmy Ba,et al.  Adam: A Method for Stochastic Optimization , 2014, ICLR.

[19]  Qiongkai Xu,et al.  GraRep: Learning Graph Representations with Global Structural Information , 2015, CIKM.

[20]  Jian Sun,et al.  Deep Residual Learning for Image Recognition , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[21]  Jure Leskovec,et al.  node2vec: Scalable Feature Learning for Networks , 2016, KDD.

[22]  Yuan Yu,et al.  TensorFlow: A system for large-scale machine learning , 2016, OSDI.

[23]  Jian Sun,et al.  Identity Mappings in Deep Residual Networks , 2016, ECCV.

[24]  Xavier Bresson,et al.  Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering , 2016, NIPS.

[25]  Le Song,et al.  POSTER: Neural Network-based Graph Embedding for Malicious Accounts Detection , 2017, CCS.

[26]  Alex Alemi,et al.  Watch Your Step: Learning Graph Embeddings Through Attention , 2017, ArXiv.

[27]  Gorjan Alagic,et al.  #p , 2019, Quantum information & computation.

[28]  Max Welling,et al.  Semi-Supervised Classification with Graph Convolutional Networks , 2016, ICLR.

[29]  Paul A. Gagniuc,et al.  Markov Chains: From Theory to Implementation and Experimentation , 2017 .

[30]  Jure Leskovec,et al.  Inductive Representation Learning on Large Graphs , 2017, NIPS.

[31]  Alexander J. Smola,et al.  Deep Sets , 2017, 1703.06114.

[32]  Jure Leskovec,et al.  Predicting multicellular function through multi-layer tissue networks , 2017, Bioinform..

[33]  Jure Leskovec,et al.  Representation Learning on Graphs: Methods and Applications , 2017, IEEE Data Eng. Bull..

[34]  Yann Dauphin,et al.  A Convolutional Encoder Model for Neural Machine Translation , 2016, ACL.

[35]  Pietro Liò,et al.  Graph Attention Networks , 2017, ICLR.

[36]  Danna Zhou,et al.  d. , 1840, Microbial pathogenesis.