Highly ordered nanostructures with tunable size, shape and properties : A new way to surface nano-patterning using ultra-thin alumina masks

Abstract Large-scale arrays of nanostructures on substrates, such as semiconductor or metal nano-particle arrays, have attracted considerable interest due to their unique physical properties and many potential applications in areas such as electronics, optoelectronics, sensing, high-density storage, and ultra-thin display devices. In the last two decades, the search for a highly efficient and low-cost nano-patterning method in fabricating ordered surface nanostructures with tunable dimensions and properties, has involved interdisciplinary and cross-disciplinary research and development with emerging technologies such as lithographic methods, self-assembly processes, and scanning probe techniques. Here, we review a new surface nano-patterning approach in fabricating ordered nanostructures, in which ultra-thin anodic alumina membranes are used as fabrication masks. Using the method, large-scale arrays of highly ordered nanostructures in the range of square centimeters can be fabricated on any substrate in a massive parallel way. The resulting nanostructures are characterized by highly defined and controllable size, shape, composition, and spacing of the nanostructures. Tuning of the properties of the arrayed nanostructures can be obtained by controlled adjustment of the structural parameters of the arrayed nanostructures. Compared to conventional lithographic methods, the present nano-patterning approach offers attractive advantages, such as large pattern area, high throughput, low equipment costs, and high flexibility and control options for ordered nanostructures with tunable properties. This new non-lithographic nano-patterning approach will be shown to be a general method in fabricating a wide range of ordered surface nanostructures with tunable and unique physical and chemical properties that could be used in the fabrication of nano-devices with high performance and controllability.

[1]  U. Ebels,et al.  Flux closure structures in cobalt rings. , 2001, Physical review letters.

[2]  David T. Crouse,et al.  Self-ordered pore structure of anodized aluminum on silicon and pattern transfer , 2000 .

[3]  Yong Lei,et al.  Preparation and photoluminescence of highly ordered TiO2 nanowire arrays , 2001 .

[4]  Wai Kin Chim,et al.  Shape and Size Control of Regularly Arrayed Nanodots Fabricated Using Ultrathin Alumina Masks , 2005 .

[5]  F. Keller,et al.  Structural Features of Oxide Coatings on Aluminum , 1953 .

[6]  M. Hon,et al.  Anodization behavior of Al film on Si substrate with different interlayers for preparing Si-based nanoporous alumina template , 2004 .

[7]  Matthew B. Johnson,et al.  Fabrication of Nanoring Arrays by Sputter Redeposition Using Porous Alumina Templates , 2004 .

[8]  Toshiaki Tamamura,et al.  Ideally Ordered Anodic Porous Alumina Mask Prepared by Imprinting of Vacuum-Evaporated Al on Si , 2001 .

[9]  Jing Ming Xu,et al.  Electrochemical Fabrication of CdS Nanowire Arrays in Porous Anodic Aluminum Oxide Templates , 1996 .

[10]  Robert Vajtai,et al.  Controlled fabrication of hierarchically branched nanopores, nanotubes, and nanowires. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[11]  R. Beresford,et al.  Nanoheteroepitaxy of GaN on a nanopore array Si surface , 2003 .

[12]  S. Cloutier,et al.  Phonon localization in periodic uniaxially nanostructured silicon , 2005 .

[13]  P. Sheng,et al.  Nano Science and Technology : Novel Structures and Phenomena , 2003 .

[14]  Jianyu Liang,et al.  Periodic array of uniform ZnO nanorods by second-order self-assembly , 2004 .

[15]  A. Alivisatos,et al.  Colloidal Nanocrystal Shape and Size Control: The Case of Cobalt , 2001, Science.

[16]  W. Shen,et al.  Fabrication and optical properties of highly ordered ZnO nanodot arrays , 2005 .

[17]  I. V. Mitchell,et al.  Ultrahigh-density, nonlithographic, sub-100 nm pattern transfer by ion implantation and selective chemical etching , 2002 .

[18]  A. Mozalev,et al.  Anodic process for forming nanostructured metal-oxide coatings for large-value precise microfilm resistor fabrication , 1999 .

[19]  M. Hon,et al.  Preparation of Ni Nanodot and Nanowire Arrays Using Porous Alumina on Silicon as a Template Without a Conductive Interlayer , 2004 .

[20]  Harry E. Ruda,et al.  Growth of Au-catalyzed ordered GaAs nanowire arrays by molecular-beam epitaxy , 2002 .

[21]  M. Moskovits,et al.  Fabrication of Nanometer‐Scale Patterns by Ion‐Milling with Porous Anodic Alumina Masks , 2000 .

[22]  Carl P. Tripp,et al.  Template‐Assisted Fabrication of Dense, Aligned Arrays of Titania Nanotubes with Well‐Controlled Dimensions on Substrates , 2004 .

[23]  Akira Fujishima,et al.  Fabrication of a Nanostructured Diamond Honeycomb Film , 2000 .

[24]  S. Seal,et al.  One dimensional nanostructured materials , 2007, Progress in Materials Science.

[25]  K. Nishio,et al.  Preparation of regularly structured porous metal membranes with two different hole diameters at the two sides , 1996 .

[26]  W. K. Choi,et al.  Effects of rapid thermal annealing time and ambient temperature on the charge storage capability of SiO 2 /pure Ge/rapid thermal oxide memory structure , 2003 .

[27]  Y. Mei,et al.  Well-aligned carbon nanotube array grown on Si-based nanoscale SiO2 islands , 2003 .

[28]  R. J. Luyken,et al.  Spectroscopy of nanoscopic semiconductor rings. , 1999, Physical review letters.

[29]  V. Sokol,et al.  SEM investigation of pillared microstructures formed by electrochemical anodization , 1998 .

[30]  Hideki Masuda,et al.  Impedance Characteristics of the Nanoporous Honeycomb Diamond Electrodes for Electrical Double-Layer Capacitor Applications , 2001 .

[31]  Ralf B. Wehrspohn,et al.  Hexagonally Arranged Monodisperse Silver Nanowires with Adjustable Diameter and High Aspect Ratio , 2003 .

[32]  K. D. Mynbaev,et al.  Structural characterization and strain relaxation in porous GaN layers , 2000 .

[33]  X. Batlle,et al.  Finite-size effects in fine particles: magnetic and transport properties , 2002 .

[34]  D. Awschalom,et al.  Physical Properties of Nanometer-Scale Magnets , 1999 .

[35]  K. Wada,et al.  Formation and Microstructures of Anodic Alumina Films from Aluminum Sputtered on Glass Substrate , 2002 .

[36]  Toshiaki Tamamura,et al.  Highly ordered nanochannel-array architecture in anodic alumina , 1997 .

[37]  Jimmy Xu,et al.  Highly periodic, three-dimensionally arranged InGaAsN : Sb quantum dot arrays fabricated nonlithographically for optical devices , 2003 .

[38]  M. Sander,et al.  Nanoparticle Arrays on Surfaces Fabricated Using Anodic Alumina Films as Templates , 2003 .

[39]  W. Shen,et al.  Synthesis of ordered large-scale ZnO nanopore arrays , 2006 .

[40]  Takayuki Takahagi,et al.  Fabrication of nanohole array on Si using self-organized porous alumina mask , 2001 .

[41]  Masahiko Sano,et al.  InGaN/GaN/AlGaN-Based Laser Diodes with Modulation-Doped Strained-Layer Superlattices , 1997 .

[42]  Toshiaki Tamamura,et al.  GaAs and InP Nanohole Arrays Fabricated by Reactive Beam Etching Using Highly Ordered Alumina Membranes , 1999 .

[43]  M. Hutley,et al.  The Optical Properties of 'Moth Eye' Antireflection Surfaces , 1982 .

[44]  Y. Lei,et al.  Highly ordered CdS nanoparticle arrays on silicon substrates and photoluminescence properties , 2005 .

[45]  Y. Lei,et al.  Ordered arrays of highly oriented single-crystal semiconductor nanoparticles on silicon substrates , 2005 .

[46]  R. Beresford,et al.  A growth pathway for highly ordered quantum dot arrays , 2004 .

[47]  C. Mu,et al.  Uniform Metal Nanotube Arrays by Multistep Template Replication and Electrodeposition , 2004 .

[48]  K. Nishio,et al.  Fabrication and thermal stability of arrays of Fe nanodots , 2002 .

[49]  U. Gösele,et al.  Monodisperse metal nanowire arrays on Si by integration of template synthesis with silicon technology , 2003 .

[50]  W. Shen,et al.  Fabrication of highly ordered nanocrystalline Si:H nanodots for the application of nanodevice arrays , 2005 .

[51]  Ataul Aziz Ikram,et al.  Nanoporous Alumina Template with In Situ Barrier Oxide Removal, Synthesized from a Multilayer Thin Film Precursor , 2005 .

[52]  K. Nishio,et al.  Optical Properties of Long-range-ordered, High-density Gold Nanodot Arrays Prepared Using Anodic Porous Alumina , 2005 .

[53]  M. R. Freeman,et al.  Direct Writing of Patterned Ceramics Using Electron‐Beam Lithography and Metallopolymer Resists , 2004 .

[54]  Markus Porto,et al.  Relative significance of particle anisotropy in systems of ultrafine ferromagnetic particles , 2002 .

[55]  S. Wong,et al.  General, room-temperature method for the synthesis of isolated as well as arrays of single-crystalline ABO4-type nanorods. , 2004, Journal of the American Chemical Society.

[56]  G. C. Wood,et al.  5 - Anodic Films on Aluminium , 1983 .

[57]  Jimmy Xu,et al.  Simulating collective magnetic dynamics in nanodisk arrays , 2003 .

[58]  Dong Ha Kim,et al.  High-temperature resistant, ordered gold nanoparticle arrays , 2006 .

[59]  S. Matsui,et al.  Focused ion beam applications to solid state devices , 1996 .

[60]  Jeong Sook Ha,et al.  Array of luminescent Er-doped Si nanodots fabricated by pulsed laser deposition , 2005 .

[61]  C. K. Inoki,et al.  Growth of GaN films on porous SiC substrate by molecular-beam epitaxy , 2002 .

[62]  K. Asakawa,et al.  InAs-Dot/GaAs Structures Site-Controlled by in situ Electron-Beam Lithography and Self-Organizing Molecular Beam Epitaxy Growth , 1999 .

[63]  Brian E. Conway,et al.  Modern Aspects of Electrochemistry , 1974 .

[64]  C. Papadopoulos,et al.  Nanoelectronics: Growing Y-junction carbon nanotubes , 1999, Nature.

[65]  Y. Lei,et al.  Fabrication, characterization and Raman study of TiO2 nanowire arrays prepared by anodic oxidative hydrolysis of TiCl3 , 2001 .

[66]  V. A. Solntsev,et al.  Novel nanoscale field emission structures: Fabrication technology, experimental, and calculated characteristics , 1999 .

[67]  C. Fonstad,et al.  Nanoair-bridged lateral overgrowth of GaN on ordered nanoporous GaN template , 2005 .

[68]  Sudipta Seal,et al.  One dimensional nanostructured materials , 2007 .

[69]  C. R. Chris Wang,et al.  Gold Nanorods: Electrochemical Synthesis and Optical Properties , 1997 .

[70]  Yu-Ming Lin,et al.  Formation of Thick Porous Anodic Alumina Films and Nanowire Arrays on Silicon Wafers and Glass , 2003 .

[71]  W. Xu,et al.  Fabrication of controllable free-standing ultrathin porous alumina membranes , 2005 .

[72]  F J García de Abajo,et al.  Optical properties of gold nanorings. , 2003, Physical review letters.

[73]  D. Seo,et al.  Nonlithographic SiO2 Nanodot Arrays via Template Synthesis Approach , 2004 .

[74]  Fabrication of GaAs hole array as a 2D-photonic crystal and their application to photonic bandgap waveguide , 2002 .

[75]  Jianyu Liang,et al.  Two-dimensional lateral superlattices of nanostructures: Nonlithographic formation by anodic membrane template , 2002 .

[76]  P. Chu,et al.  Cu oxide nanowire array grown on Si-based SiO2 nanoscale islands via nanochannels , 2004 .

[77]  Q. Guo,et al.  Highly-ordered GaAs/AlGaAs quantum-dot arrays on GaAs (001) substrates grown by molecular-beam epitaxy using nanochannel alumina masks , 2003 .

[78]  H. Masuda,et al.  Small quantum‐sized CdS particles assembled to form a regularly nanostructured porous film , 1995 .

[79]  Kornelius Nielsch,et al.  Hexagonal pore arrays with a 50-420 nm interpore distance formed by self-organization in anodic alumina , 1998 .

[80]  T. Mallouk,et al.  Ordered SBA-15 nanorod arrays inside a porous alumina membrane. , 2004, Journal of the American Chemical Society.

[81]  Robert M. Metzger,et al.  On the Growth of Highly Ordered Pores in Anodized Aluminum Oxide , 1998 .

[82]  Weidong Yang,et al.  Linearly Polarized Emission from Colloidal Semiconductor Quantum Rods , 2001, Science.

[83]  H. Ruda,et al.  Relaxation model of coherent island formation in heteroepitaxial thin films , 2000 .

[84]  Harry E. Ruda,et al.  Fabrication of ZnTe Nanohole Arrays by Reactive Ion Etching Using Anodic Alumina Templates , 2002 .

[85]  J. Park,et al.  Formation of Self-assembled Nanostructure on Noble Metal Islands Based on Anodized Aluminum Oxide , 2004 .

[86]  Kornelius Nielsch,et al.  Uniform Nickel Deposition into Ordered Alumina Pores by Pulsed Electrodeposition , 2000 .

[87]  Zhongpin Zhang,et al.  Ordered nanoporous nickel films and their magnetic properties , 2003 .

[88]  Kazuyuki Nishio,et al.  Fabrication of Ordered Arrays of Multiple Nanodots Using Anodic Porous Alumina as an Evaporation Mask , 2000 .

[89]  N. Lewis,et al.  Fabrication of Free-Standing Nanoscale Alumina Membranes with Controllable Pore Aspect Ratios , 2004 .

[90]  A. Mozalev,et al.  The growth and electrical transport properties of self-organized metal/oxide nanostructures formed by anodizing Ta-Al thin-film bilayers , 2005 .

[91]  Zheng Xu,et al.  Template Synthesis and Magnetic Behavior of an Array of Cobalt Nanowires Encapsulated in Polyaniline Nanotubules , 2001 .

[92]  Kazuhiro Hane,et al.  100 nm period silicon antireflection structures fabricated using a porous alumina membrane mask , 2001 .

[93]  I. Yoo,et al.  Synthesis of Si Nanostrutures via Self-organized Pillar Mask , 2004 .

[94]  C. Stafford,et al.  Nanoscopic Templates from Oriented Block Copolymer Films , 2000 .

[95]  Herbert Herman,et al.  Treatise on Materials Science and Technology , 1979 .

[96]  Takayuki Takahagi,et al.  Two-dimensional nanowire array formation on Si substrate using self-organized nanoholes of anodically oxidized aluminum , 1999 .

[97]  C. R. Martin,et al.  Carbon nanotubule membranes for electrochemical energy storage and production , 1998, Nature.

[98]  C. Fonstad,et al.  InGaN nanorings and nanodots by selective area epitaxy , 2005 .

[99]  G. Whitesides,et al.  Self-Assembly at All Scales , 2002, Science.

[100]  Mark L. Schattenburg,et al.  Replication of 50‐nm‐linewidth device patterns using proximity x‐ray lithography at large gaps , 1991 .

[101]  T. Den,et al.  Electrodeposition of (001) oriented CoPt L10 columns into anodic alumina films , 2003 .

[102]  Soo Jin Chua,et al.  Fabrication and properties of nanoporous GaN films , 2004 .

[103]  G. Schmid,et al.  Nanostructured silicon surfaces via nanoporous alumina. , 2003, Chemical communications.

[104]  Harry E. Ruda,et al.  Molecular-beam epitaxial growth of GaAs and InGaAs/GaAs nanodot arrays using anodic Al2O3 nanohole array template masks , 2002 .

[105]  P. Alsing,et al.  Electric field tuning of plasmonic response of nanodot array in liquid crystal matrix. , 2005, Nano letters.

[106]  Y. Mei,et al.  Violet photoluminescence from Ge+-implanted Si-based nanoscale SiO2 islands array , 2002 .

[107]  Stephan Krämer,et al.  Scanning probe lithography using self-assembled monolayers. , 2003, Chemical reviews.

[108]  A. Vorobyova,et al.  Study of pillar microstructure formation with anodic oxides , 1998 .

[109]  Charles R. Martin,et al.  Nanomaterials: A Membrane-Based Synthetic Approach , 1994, Science.

[110]  A. Mozalev,et al.  Nucleation and growth of the nanostructured anodic oxides on tantalum and niobium under the porous alumina film , 2003 .

[111]  Martin Moskovits,et al.  Nonlithographic nano-wire arrays: fabrication, physics, and device applications , 1996 .

[112]  Soo Jin Chua,et al.  Nanoscale lateral epitaxial overgrowth of GaN on Si (111) , 2005 .

[113]  Y. Lei,et al.  Highly ordered arrays of metal/semiconductor core-shell nanoparticles with tunable nanostructures and photoluminescence. , 2005, Journal of the American Chemical Society.

[114]  K. Zhu,et al.  Plasma Etching Transfer of a Nanoporous Pattern on a Generic Substrate , 2004 .

[115]  Zhanghua Wu,et al.  Molecular beam epitaxial growth studies of ordered GaAs nanodot arrays using anodic alumina masks , 2003 .

[116]  M. Dawson,et al.  Uniform and efficient GaAs/AlGaAs quantum dots , 1995 .

[117]  H. Ogawa,et al.  Fabrication of Indium Nitride Nanodots Using Anodic Alumina Templates , 2003 .

[118]  Charles R. Martin,et al.  A general template-based method for the preparation of nanomaterials , 1997 .

[119]  W. Cai,et al.  Fabrication, Characterization and Physical Properties of Nanostructured Metal Replicated Membranes , 2003 .

[120]  P. R. Larson,et al.  Spin waves in nickel nanorings of large aspect ratio. , 2005, Physical review letters.

[121]  Craig J Hawker,et al.  A Generalized Approach to the Modification of Solid Surfaces , 2005, Science.

[122]  Sachiko Ono,et al.  Self‐Ordering of Cell Arrangement of Anodic Porous Alumina Formed in Sulfuric Acid Solution , 1997 .

[123]  Masayoshi Esashi,et al.  Pattern Transfer of Self-Ordered Structure with Diamond Mold , 2003 .

[124]  A. Fujishima,et al.  Electrochemical Characterization of the Nanoporous Honeycomb Diamond Electrode as an Electrical Double‐Layer Capacitor , 2000 .

[125]  F. Pan,et al.  Self-organized titanium oxide nanodot arrays by electrochemical anodization , 2003 .

[126]  Soo Jin Chua,et al.  High optical quality GaN nanopillar arrays , 2005 .

[127]  J. Thong,et al.  Large-Scale Ordered Carbon Nanotube Arrays Initiated from Highly Ordered Catalyst Arrays on Silicon Substrates , 2004 .

[128]  Cheng-Tzu Kuo,et al.  Preparation and phase transformation of highly ordered TiO2 nanodot arrays on sapphire substrates , 2004 .

[129]  S. Shingubara,et al.  Formation of aluminum nanodot array by combination of nanoindentation and anodic oxidation of aluminum , 2003 .

[130]  J. Gibson,et al.  Reading and Writing with Electron Beams , 1997 .

[131]  Kenji Fukuda,et al.  Ordered Metal Nanohole Arrays Made by a Two-Step Replication of Honeycomb Structures of Anodic Alumina , 1995, Science.

[132]  Hideki Masuda,et al.  Fabrication of gold nanodot array using anodic porous alumina as an evaporation mask , 1996 .

[133]  C. R. Martin,et al.  Membrane-Based Synthesis of Nanomaterials , 1996 .

[134]  M. Ketchen,et al.  Diamagnetic persistent current in diffusive normal-metal rings. , 2001, Physical review letters.

[135]  W. K. Choi,et al.  Synthesis of germanium nanodots on silicon using an anodic alumina membrane mask , 2004 .

[136]  A. Fujishima,et al.  Fabrication of Through-Hole Diamond Membranes by Plasma Etching Using Anodic Porous Alumina Mask , 2001 .

[137]  M. Holtz,et al.  Optical properties of a nanoporous array in silicon , 2005 .

[138]  A. Despić,et al.  Electrochemistry of Aluminum in Aqueous Solutions and Physics of Its Anodic Oxide , 1989 .

[139]  Martin Moskovits,et al.  Highly-ordered carbon nanotube arrays for electronics applications , 1999 .

[140]  T. Den,et al.  Multiwalled carbon nanotubes growth in anodic alumina nanoholes , 1999 .

[141]  T. Mallouk,et al.  Penetrating the oxide barrier in situ and separating freestanding porous anodic alumina films in one step. , 2005, Nano letters.

[142]  S. Shingubara,et al.  Formation of Al Dot Hexagonal Array on Si Using Anodic Oxidation and Selective Etching , 2002 .

[143]  Veena Misra,et al.  Redox-active monolayers on nano-scale silicon electrodes , 2005, Nanotechnology.

[144]  Frank Müller,et al.  Self-organized formation of hexagonal pore arrays in anodic alumina , 1998 .

[145]  Soo‐Hwan Jeong,et al.  Shape Change of Self-Organized NbOx Nanopillar Arrays by High Density Plasma Etching , 2005 .

[146]  张哉根,et al.  Leu-M , 1991 .