Isogeometric analysis based on extended Catmull-Clark subdivision
暂无分享,去创建一个
Guoliang Xu | Yongjie Zhang | Qing Pan | Gang Xu | Guoliang Xu | Y. Zhang | Qing Pan | Gang Xu
[1] Wang Yuguo,et al. Piecewise Smooth Surfaces Reconstruction for Finite Element Mixed Meshes , 2010, 2010 International Conference on Digital Manufacturing & Automation.
[2] T. Hughes,et al. ISOGEOMETRIC ANALYSIS: APPROXIMATION, STABILITY AND ERROR ESTIMATES FOR h-REFINED MESHES , 2006 .
[3] Chandrajit L. Bajaj,et al. Anisotropic diffusion of surfaces and functions on surfaces , 2003, TOGS.
[4] Tony DeRose,et al. Piecewise smooth surface reconstruction , 1994, SIGGRAPH.
[5] H. Nguyen-Xuan,et al. An extended isogeometric thin shell analysis based on Kirchhoff-Love theory , 2015 .
[6] John A. Evans,et al. Isogeometric analysis using T-splines , 2010 .
[7] P. G. Ciarlet,et al. Interpolation theory over curved elements, with applications to finite element methods , 1972 .
[8] Xiaoping Qian,et al. Isogeometric analysis on triangulations , 2014, Comput. Aided Des..
[9] E. Catmull,et al. Recursively generated B-spline surfaces on arbitrary topological meshes , 1978 .
[10] Hendrik Speleers,et al. Isogeometric analysis with Powell–Sabin splines for advection–diffusion–reaction problems , 2012 .
[11] Guoliang Xu,et al. Construction of minimal subdivision surface with a given boundary , 2011, Comput. Aided Des..
[12] Jos Stam,et al. Exact evaluation of Catmull-Clark subdivision surfaces at arbitrary parameter values , 1998, SIGGRAPH.
[13] Thomas J. R. Hughes,et al. Truncated hierarchical Catmull–Clark subdivision with local refinement , 2015 .
[14] M. Ortiz,et al. Subdivision surfaces: a new paradigm for thin‐shell finite‐element analysis , 2000 .
[15] Yuri Bazilevs,et al. Rotation free isogeometric thin shell analysis using PHT-splines , 2011 .
[16] T. Hughes,et al. Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .
[17] Guoliang Xu,et al. Construction of quadrilateral subdivision surfaces with prescribed G1 boundary conditions , 2011, Comput. Aided Des..
[18] Hongwei Lin,et al. Watertight trimmed NURBS , 2008, ACM Trans. Graph..
[19] T. Rabczuk,et al. T-spline based XIGA for fracture analysis of orthotropic media , 2015 .
[20] Tom Lyche,et al. T-spline Simplication and Local Renement , 2004 .
[21] Trond Kvamsdal,et al. Isogeometric analysis using LR B-splines , 2014 .
[22] Ahmad H. Nasri,et al. T-splines and T-NURCCs , 2003, ACM Trans. Graph..
[23] Timon Rabczuk,et al. Reproducing Kernel Triangular B-spline-based FEM for Solving PDEs , 2013 .
[24] Henning Biermann,et al. Piecewise smooth subdivision surfaces with normal control , 2000, SIGGRAPH.
[25] Bruno Lévy,et al. Automatic and interactive mesh to T-spline conversion , 2006, SGP '06.
[26] Guoliang Xu,et al. A unified method for hybrid subdivision surface design using geometric partial differential equations , 2014, Comput. Aided Des..
[27] L. Piegl,et al. The NURBS Book , 1995, Monographs in Visual Communications.
[28] H. Nguyen-Xuan,et al. Isogeometric analysis using polynomial splines over hierarchical T-meshes for two-dimensional elastic solids , 2011 .
[29] Bernd Hamann,et al. Iso‐geometric Finite Element Analysis Based on Catmull‐Clark : ubdivision Solids , 2010, Comput. Graph. Forum.