Isogeometric analysis based on extended Catmull-Clark subdivision

In this paper, we propose a subdivision-based finite element method as an integration of the isogeometric analysis (IGA) framework which adopts the uniform representation for geometric modeling and finite element simulation. The finite element function space is induced from the limit form of Catmull-Clark surface subdivision containing boundary subdivision schemes which has C 1 continuity everywhere. It is capable of exactly representing complex geometries with any shaped boundaries which are represented as piecewise cubic B-spline curves. It is compatible with modern Computer Aided Design (CAD) software systems. The advantage of this strategy admits quadrilateral meshes of arbitrary topology. In this work, the computational domains with planar geometries are considered. We establish the approximation properties of Catmull-Clark surface subdivision function based on the Bramble-Hilbert lemma. Numerical tests are performed through three Poisson's equations with the Dirichlet boundary condition to corroborate the theoretical proof.

[1]  Wang Yuguo,et al.  Piecewise Smooth Surfaces Reconstruction for Finite Element Mixed Meshes , 2010, 2010 International Conference on Digital Manufacturing & Automation.

[2]  T. Hughes,et al.  ISOGEOMETRIC ANALYSIS: APPROXIMATION, STABILITY AND ERROR ESTIMATES FOR h-REFINED MESHES , 2006 .

[3]  Chandrajit L. Bajaj,et al.  Anisotropic diffusion of surfaces and functions on surfaces , 2003, TOGS.

[4]  Tony DeRose,et al.  Piecewise smooth surface reconstruction , 1994, SIGGRAPH.

[5]  H. Nguyen-Xuan,et al.  An extended isogeometric thin shell analysis based on Kirchhoff-Love theory , 2015 .

[6]  John A. Evans,et al.  Isogeometric analysis using T-splines , 2010 .

[7]  P. G. Ciarlet,et al.  Interpolation theory over curved elements, with applications to finite element methods , 1972 .

[8]  Xiaoping Qian,et al.  Isogeometric analysis on triangulations , 2014, Comput. Aided Des..

[9]  E. Catmull,et al.  Recursively generated B-spline surfaces on arbitrary topological meshes , 1978 .

[10]  Hendrik Speleers,et al.  Isogeometric analysis with Powell–Sabin splines for advection–diffusion–reaction problems , 2012 .

[11]  Guoliang Xu,et al.  Construction of minimal subdivision surface with a given boundary , 2011, Comput. Aided Des..

[12]  Jos Stam,et al.  Exact evaluation of Catmull-Clark subdivision surfaces at arbitrary parameter values , 1998, SIGGRAPH.

[13]  Thomas J. R. Hughes,et al.  Truncated hierarchical Catmull–Clark subdivision with local refinement , 2015 .

[14]  M. Ortiz,et al.  Subdivision surfaces: a new paradigm for thin‐shell finite‐element analysis , 2000 .

[15]  Yuri Bazilevs,et al.  Rotation free isogeometric thin shell analysis using PHT-splines , 2011 .

[16]  T. Hughes,et al.  Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .

[17]  Guoliang Xu,et al.  Construction of quadrilateral subdivision surfaces with prescribed G1 boundary conditions , 2011, Comput. Aided Des..

[18]  Hongwei Lin,et al.  Watertight trimmed NURBS , 2008, ACM Trans. Graph..

[19]  T. Rabczuk,et al.  T-spline based XIGA for fracture analysis of orthotropic media , 2015 .

[20]  Tom Lyche,et al.  T-spline Simplication and Local Renement , 2004 .

[21]  Trond Kvamsdal,et al.  Isogeometric analysis using LR B-splines , 2014 .

[22]  Ahmad H. Nasri,et al.  T-splines and T-NURCCs , 2003, ACM Trans. Graph..

[23]  Timon Rabczuk,et al.  Reproducing Kernel Triangular B-spline-based FEM for Solving PDEs , 2013 .

[24]  Henning Biermann,et al.  Piecewise smooth subdivision surfaces with normal control , 2000, SIGGRAPH.

[25]  Bruno Lévy,et al.  Automatic and interactive mesh to T-spline conversion , 2006, SGP '06.

[26]  Guoliang Xu,et al.  A unified method for hybrid subdivision surface design using geometric partial differential equations , 2014, Comput. Aided Des..

[27]  L. Piegl,et al.  The NURBS Book , 1995, Monographs in Visual Communications.

[28]  H. Nguyen-Xuan,et al.  Isogeometric analysis using polynomial splines over hierarchical T-meshes for two-dimensional elastic solids , 2011 .

[29]  Bernd Hamann,et al.  Iso‐geometric Finite Element Analysis Based on Catmull‐Clark : ubdivision Solids , 2010, Comput. Graph. Forum.