High energy solutions for the superlinear Schrödinger–Maxwell equations☆

Abstract In this paper we study the existence of infinitely many large energy solutions for the superlinear Schrodinger–Maxwell equations { − Δ u + V ( x ) u + ϕ u = f ( x , u ) , in R 3 , − Δ ϕ = u 2 , in R 3 , via the Fountain Theorem in critical point theory.

[1]  A. Salvatore Multiple Solitary Waves For a Non-homogeneous Schrödinger–Maxwell System in ℝ3 , 2006 .

[2]  Antonio Masiello,et al.  Solitons and the electromagnetic field , 1999 .

[3]  David Ruiz,et al.  The Schrödinger–Poisson equation under the effect of a nonlinear local term , 2006 .

[4]  Thomas Bartsch,et al.  Infinitely many solutions of a symmetric Dirichlet problem , 1993 .

[5]  Vieri Benci,et al.  The nonlinear Klein–Gordon equation coupled with the Maxwell equations , 2001 .

[6]  Walter A. Strauss,et al.  Existence of solitary waves in higher dimensions , 1977 .

[7]  Thomas Bartsch,et al.  Existence and multiplicity results for some superlinear elliptic problems on RN , 1995 .

[8]  Vieri Benci,et al.  Abstract critical point theorems and applications to some nonlinear problems with “strong” resonance at infinity , 1983 .

[9]  M. Willem Minimax Theorems , 1997 .

[10]  W. D. Evans,et al.  PARTIAL DIFFERENTIAL EQUATIONS , 1941 .

[11]  Vieri Benci,et al.  An eigenvalue problem for the Schrödinger-Maxwell equations , 1998 .

[12]  D. Gilbarg,et al.  Elliptic Partial Differential Equa-tions of Second Order , 1977 .

[13]  Nils Ackermann,et al.  A nonlinear superposition principle and multibump solutions of periodic Schrödinger equations , 2006 .

[14]  P. Rabinowitz Minimax methods in critical point theory with applications to differential equations , 1986 .

[15]  Hiroaki Kikuchi On the existence of a solution for elliptic system related to the Maxwell–Schrödinger equations , 2007 .

[16]  Huan-Song Zhou,et al.  Positive solution for a nonlinear stationary Schrödinger-Poisson system in $R^3$ , 2007 .

[17]  M. Willem,et al.  On An Elliptic Equation With Concave and Convex Nonlinearities , 1995 .

[18]  Fukun Zhao,et al.  Positive solutions for Schrödinger–Poisson equations with a critical exponent , 2009 .

[19]  Daniele Cassani,et al.  Existence and non-existence of solitary waves for the critical Klein–Gordon equation coupled with Maxwell's equations , 2004 .

[20]  Dimitri Mugnai,et al.  Solitary waves for nonlinear Klein–Gordon–Maxwell and Schrödinger–Maxwell equations , 2004, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[21]  G. Coclite A multiplicity result for the Schrödinger-Maxwell equations with negative potential , 2002 .

[22]  Dimitri Mugnai,et al.  Non-Existence Results for the Coupled Klein-Gordon-Maxwell Equations , 2004 .

[23]  P. Rabinowitz,et al.  Dual variational methods in critical point theory and applications , 1973 .

[24]  Khalid Benmlih Stationary Solutions for a Schrodinger-Poisson System in R 3 , 2002 .

[25]  Martin Schechter,et al.  Critical point theory and its applications , 2006 .

[26]  Michael Struwe,et al.  Variational methods: Applications to nonlinear partial differential equations and Hamiltonian systems , 1990 .

[27]  Fukun Zhao,et al.  On the existence of solutions for the Schrödinger-Poisson equations , 2008 .

[28]  Antonio Azzollini,et al.  A Note on the Ground State Solutions for the Nonlinear Schrödinger-Maxwell Equations , 2007, math/0703677.