Applications of next-generation sequencing to unravelling the evolutionary history of algae.

First-generation Sanger DNA sequencing revolutionized science over the past three decades and the current next-generation sequencing (NGS) technology has opened the doors to the next phase in the sequencing revolution. Using NGS, scientists are able to sequence entire genomes and to generate extensive transcriptome data from diverse photosynthetic eukaryotes in a timely and cost-effective manner. Genome data in particular shed light on the complicated evolutionary history of algae that form the basis of the food chain in many environments. In the Eukaryotic Tree of Life, the fact that photosynthetic lineages are positioned in four supergroups has important evolutionary consequences. We now know that the story of eukaryotic photosynthesis unfolds with a primary endosymbiosis between an ancestral heterotrophic protist and a captured cyanobacterium that gave rise to the glaucophytes, red algae and Viridiplantae (green algae and land plants). These primary plastids were then transferred to other eukaryotic groups through secondary endosymbiosis. A red alga was captured by the ancestor(s) of the stramenopiles, alveolates (dinoflagellates, apicomplexa, chromeridae), cryptophytes and haptophytes, whereas green algae were captured independently by the common ancestors of the euglenophytes and chlorarachniophytes. A separate case of primary endosymbiosis is found in the filose amoeba Paulinella chromatophora, which has at least nine heterotrophic sister species. Paulinella genome data provide detailed insights into the early stages of plastid establishment. Therefore, genome data produced by NGS have provided many novel insights into the taxonomy, phylogeny and evolutionary history of photosynthetic eukaryotes.

[1]  Ulrich C. Klostermeier,et al.  Genome and low-iron response of an oceanic diatom adapted to chronic iron limitation , 2012, Genome Biology.

[2]  J. Banfield,et al.  Gene Transfer from Bacteria and Archaea Facilitated Evolution of an Extremophilic Eukaryote , 2013, Science.

[3]  J. Jurka,et al.  Genomic Analysis of Organismal Complexity in the Multicellular Green Alga Volvox carteri , 2010, Science.

[4]  R. DeSalle,et al.  GENE TREES, SPECIES TREES, AND SYSTEMATICS: A Cladistic Perspective , 1996 .

[5]  N. Butterfield,et al.  Bangiomorpha pubescens n. gen., n. sp.: implications for the evolution of sex, multicellularity, and the Mesoproterozoic/Neoproterozoic radiation of eukaryotes , 2000, Paleobiology.

[6]  P. Martone,et al.  Evolution of Red Algal Plastid Genomes: Ancient Architectures, Introns, Horizontal Gene Transfer, and Taxonomic Utility of Plastid Markers , 2013, PloS one.

[7]  P. Keeling,et al.  The evolutionary history of haptophytes and cryptophytes: phylogenomic evidence for separate origins , 2012, Proceedings of the Royal Society B: Biological Sciences.

[8]  A. Salamov,et al.  Pan genome of the phytoplankton Emiliania underpins its global distribution , 2013, Nature.

[9]  David J. Allen,et al.  Analysis of photosynthetic picoeukaryote diversity at open ocean sites in the Arabian Sea using a PCR biased towards marine algal plastids , 2006 .

[10]  A. Weber,et al.  The origin and establishment of the plastid in algae and plants. , 2007, Annual review of genetics.

[11]  Matthew W. Brown,et al.  The Revised Classification of Eukaryotes , 2012, The Journal of eukaryotic microbiology.

[12]  G. McFadden,et al.  Something borrowed, something green: lateral transfer of chloroplasts by secondary endosymbiosis. , 1995, Trends in ecology & evolution.

[13]  N. Vørs Marine heterotrophic amoebae, flagellates and heliozoa from Belize (Central America) and Tenerife (Canary Islands), with descriptions of new species, Luffisphaera bulbochaete N. Sp., L. longihastis N. Sp., L. turriformis N. Sp. and Paulinella intermedia N. Sp. , 1993 .

[14]  M. Stoneking,et al.  Mitochondrial DNA and two perspectives on evolutionary genetics , 1985 .

[15]  D. Caron,et al.  Abundance and Distribution of Ostreococcus sp. in the San Pedro Channel, California, as Revealed by Quantitative PCR , 2006, Applied and Environmental Microbiology.

[16]  H. Doddapaneni,et al.  Cyanophora paradoxa Genome Elucidates Origin of Photosynthesis in Algae and Plants , 2012, Science.

[17]  Xumin Wang,et al.  Complete Sequences of the Mitochondrial DNA of the Wild Gracilariopsis lemaneiformis and Two Mutagenic Cultivated Breeds (Gracilariaceae, Rhodophyta) , 2012, PloS one.

[18]  M. Melkonian,et al.  Molecular Evolutionary Analyses of Nuclear‐Encoded Small Subunit Ribosomal RNA Identify an Independent Rhizopod Lineage Containing the Euglyphina and the Chlorarachniophyta , 1995, The Journal of eukaryotic microbiology.

[19]  L. Sagan On the origin of mitosing cells , 1967, Journal of theoretical biology.

[20]  Evgeny M. Zdobnov,et al.  OrthoDB: the hierarchical catalog of eukaryotic orthologs , 2007, Nucleic Acids Res..

[21]  D. Vaulot,et al.  Plastid 16S rRNA Gene Diversity among Eukaryotic Picophytoplankton Sorted by Flow Cytometry from the South Pacific Ocean , 2011, PloS one.

[22]  D. Bhattacharya,et al.  Algal endosymbionts as vectors of horizontal gene transfer in photosynthetic eukaryotes , 2013, Front. Plant Sci..

[23]  K. Ishida,et al.  Another acquisition of a primary photosynthetic organelle is underway in Paulinella chromatophora , 2009, Current Biology.

[24]  Xuhua Xia,et al.  Rapid evolution of animal mitochondrial DNA , 2012 .

[25]  Corinne Da Silva,et al.  The Ectocarpus genome and the independent evolution of multicellularity in brown algae , 2010, Nature.

[26]  A. Rosenthal,et al.  The Structure and Gene Repertoire of an Ancient Red Algal Plastid Genome , 2000, Journal of Molecular Evolution.

[27]  Debashish Bhattacharya,et al.  Photosynthetic eukaryotes unite: endosymbiosis connects the dots. , 2004, BioEssays : news and reviews in molecular, cellular and developmental biology.

[28]  Debashish Bhattacharya,et al.  A molecular timeline for the origin of photosynthetic eukaryotes. , 2004, Molecular biology and evolution.

[29]  C. Bowler,et al.  Decoding algal genomes: tracing back the history of photosynthetic life on Earth. , 2011, The Plant journal : for cell and molecular biology.

[30]  D. Vaulot,et al.  The diversity of small eukaryotic phytoplankton (< or =3 microm) in marine ecosystems. , 2008, FEMS microbiology reviews.

[31]  A. Salamov,et al.  Algal genomes reveal evolutionary mosaicism and the fate of nucleomorphs , 2012, Nature.

[32]  A. Weber,et al.  Adaptation through horizontal gene transfer in the cryptoendolithic red alga Galdieria phlegrea , 2013, Current Biology.

[33]  A. Monfort,et al.  Complete sequence of Euglena gracilis chloroplast DNA. , 1993, Nucleic acids research.

[34]  D. Vaulot,et al.  Quantitative Assessment of Picoeukaryotes in the Natural Environment by Using Taxon-Specific Oligonucleotide Probes in Association with Tyramide Signal Amplification-Fluorescence In Situ Hybridization and Flow Cytometry , 2003, Applied and Environmental Microbiology.

[35]  A. Sherwood,et al.  A molecular method for identification of the morphologically plastic invasive algal genera Eucheuma and Kappaphycus (Rhodophyta, Gigartinales) in Hawaii , 2009, Journal of Applied Phycology.

[36]  T. Pröschold,et al.  Portrait of a Species , 2005, Genetics.

[37]  Caspar Zialor DNA sequencing with chain terminating inhibitors , 2014 .

[38]  Ahmed Moustafa,et al.  Differential gene retention in plastids of common recent origin. , 2010, Molecular biology and evolution.

[39]  S. P. Gibbs,et al.  The chloroplasts of Euglena may have evolved from symbiotic green algae , 1978 .

[40]  J. Raymond,et al.  Possible Role of Horizontal Gene Transfer in the Colonization of Sea Ice by Algae , 2012, PloS one.

[41]  K. Nicholls A multivariate statistical evaluation of the "acolla-complex" of Corythionella species, including a description of C. darwini n. sp. (Rhizopoda: Filosea or Rhizaria: Cercozoa). , 2009, European journal of protistology.

[42]  H. Yoon,et al.  Data mining approach identifies research priorities and data requirements for resolving the red algal tree of life , 2010, BMC Evolutionary Biology.

[43]  E. Yang,et al.  Single cell genome analysis supports a link between phagotrophy and primary plastid endosymbiosis , 2012, Scientific Reports.

[44]  D. Bhattacharya,et al.  Phylogenomic analysis supports the monophyly of cryptophytes and haptophytes and the association of rhizaria with chromalveolates. , 2007, Molecular biology and evolution.

[45]  Monique Turmel,et al.  The chloroplast and mitochondrial genome sequences of the charophyte Chaetosphaeridium globosum: Insights into the timing of the events that restructured organelle DNAs within the green algal lineage that led to land plants , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[46]  T. Glenn Field guide to next‐generation DNA sequencers , 2011, Molecular ecology resources.

[47]  Yves Desdevises,et al.  Picoeukaryotic sequences in the Sargasso Sea metagenome , 2008, Genome Biology.

[48]  Jinling Huang,et al.  Did an ancient chlamydial endosymbiosis facilitate the establishment of primary plastids? , 2007, Genome Biology.

[49]  S. Gould Evolutionary genomics: Algae's complex origins , 2012, Nature.

[50]  Jean-Michel Claverie,et al.  The Chlorella variabilis NC64A Genome Reveals Adaptation to Photosymbiosis, Coevolution with Viruses, and Cryptic Sex[C][W] , 2010, Plant Cell.

[51]  Jean-Michel Claverie,et al.  The genome of the polar eukaryotic microalga Coccomyxa subellipsoidea reveals traits of cold adaptation , 2012, Genome Biology.

[52]  O. White,et al.  Environmental Genome Shotgun Sequencing of the Sargasso Sea , 2004, Science.

[53]  D. Bhattacharya,et al.  The Plastid Genome of the Red Macroalga Grateloupia taiwanensis (Halymeniaceae) , 2013, PloS one.

[54]  Debashish Bhattacharya,et al.  Genomic Footprints of a Cryptic Plastid Endosymbiosis in Diatoms , 2009, Science.

[55]  Edward F. DeLong,et al.  The microbial ocean from genomes to biomes , 2009, Nature.

[56]  S. Tringe,et al.  Targeted metagenomics and ecology of globally important uncultured eukaryotic phytoplankton , 2010, Proceedings of the National Academy of Sciences.

[57]  Evgeny M. Zdobnov,et al.  OrthoDB: the hierarchical catalog of eukaryotic orthologs in 2011 , 2010, Nucleic Acids Res..

[58]  B. Dujon,et al.  Mitochondrial DNA of Chlamydomonas reinhardtii: the structure of the ends of the linear 15.8-kb genome suggests mechanisms for DNA replication , 1993, Current Genetics.

[59]  C. Kidner,et al.  Next-generation sequencing and systematics: What can a billion base pairs of DNA sequence data do for you? , 2011 .

[60]  Susana M. Coelho,et al.  Genome structure and metabolic features in the red seaweed Chondrus crispus shed light on evolution of the Archaeplastida , 2013, Proceedings of the National Academy of Sciences.

[61]  D. Vaulot,et al.  Diversity of active marine picoeukaryotes in the Eastern Mediterranean Sea unveiled using photosystem-II psbA transcripts , 2010, The ISME Journal.

[62]  D. Scanlan,et al.  Genetic diversity of eukaryotic ultraphytoplankton in the Gulf of Naples during an annual cycle , 2007 .

[63]  D. Bhattacharya,et al.  A single origin of the photosynthetic organelle in different Paulinella lineages , 2009, BMC Evolutionary Biology.

[64]  M. Melkonian,et al.  Minimal plastid genome evolution in the Paulinella endosymbiont , 2006, Current Biology.

[65]  S. Adl,et al.  The New Higher Level Classification of Eukaryotes with Emphasis on the Taxonomy of Protists , 2005, The Journal of eukaryotic microbiology.

[66]  Nicholas H. Putnam,et al.  The tiny eukaryote Ostreococcus provides genomic insights into the paradox of plankton speciation , 2007, Proceedings of the National Academy of Sciences.

[67]  S. Y. Kim,et al.  Complete mitochondrial genome of the marine red alga Grateloupia angusta (Halymeniales) , 2014, Mitochondrial DNA.

[68]  Kamran Shalchian-Tabrizi,et al.  Phylogenomics Reshuffles the Eukaryotic Supergroups , 2007, PloS one.

[69]  B. Henrissat,et al.  Genome of the red alga Porphyridium purpureum , 2013, Nature Communications.

[70]  Tibor Vellai,et al.  A New Aspect to the Origin and Evolution of Eukaryotes , 1998, Journal of Molecular Evolution.

[71]  B. De Baets,et al.  Genome analysis of the smallest free-living eukaryote Ostreococcus tauri unveils many unique features. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[72]  A. Grossman,et al.  Trafficking of protein into the recently established photosynthetic organelles of Paulinella chromatophora , 2012, Proceedings of the National Academy of Sciences.

[73]  Y. Inagaki,et al.  Large-Scale Phylogenomic Analyses Reveal That Two Enigmatic Protist Lineages, Telonemia and Centroheliozoa, Are Related to Photosynthetic Chromalveolates , 2009, Genome biology and evolution.

[74]  A. Grossman,et al.  Endosymbiotic gene transfer and transcriptional regulation of transferred genes in Paulinella chromatophora. , 2011, Molecular biology and evolution.

[75]  Leszek Rychlewski,et al.  The Phaeodactylum genome reveals the evolutionary history of diatom genomes , 2008, Nature.

[76]  Zhanru Shao,et al.  Chloroplast genome of one brown seaweed, Saccharina japonica (Laminariales, Phaeophyta): its structural features and phylogenetic analyses with other photosynthetic plastids. , 2013, Marine genomics.

[77]  Monique Turmel,et al.  Ancestral chloroplast genome in Mesostigma viride reveals an early branch of green plant evolution , 2000, Nature.

[78]  Fabien Burki,et al.  Phylogenomics reveals a new ‘megagroup’ including most photosynthetic eukaryotes , 2008, Biology Letters.

[79]  D. Vaulot,et al.  A Single Species, Micromonas pusilla (Prasinophyceae), Dominates the Eukaryotic Picoplankton in the Western English Channel , 2004, Applied and Environmental Microbiology.

[80]  S. P. Gibbs,et al.  Are the Nucleomorphs of Cryptomonads and Chlorarachnion the Vestigial Nuclei of Eukaryotic Endosymbionts? a , 1987 .

[81]  Christophe Dessimoz,et al.  Resolving the Ortholog Conjecture: Orthologs Tend to Be Weakly, but Significantly, More Similar in Function than Paralogs , 2012, PLoS Comput. Biol..

[82]  Paul W. Johnson,et al.  Ultrastructure and Ecology of Calycomonas ovalis Wulff, 1919, (Chrysophyceae) and Its Redescription as a Testate Rhizopod, Paulinella ovalis N. Comb. (Filosea: Euglyphina)1 , 1988 .

[83]  Naiara Rodríguez-Ezpeleta,et al.  Monophyly of Primary Photosynthetic Eukaryotes: Green Plants, Red Algae, and Glaucophytes , 2005, Current Biology.

[84]  O. Béjà,et al.  Metagenomic retrieval of a ribosomal DNA repeat array from an uncultured marine alveolate. , 2008, Environmental microbiology.

[85]  Jonas Korlach,et al.  Selective aluminum passivation for targeted immobilization of single DNA polymerase molecules in zero-mode waveguide nanostructures , 2008, Proceedings of the National Academy of Sciences.

[86]  Debashish Bhattacharya,et al.  Phylogeny of Calvin cycle enzymes supports Plantae monophyly. , 2007, Molecular phylogenetics and evolution.

[87]  Daniel J. G. Lahr,et al.  Estimating the timing of early eukaryotic diversification with multigene molecular clocks , 2011, Proceedings of the National Academy of Sciences.

[88]  R. Stepanauskas,et al.  Single-Cell Genomics Reveals Organismal Interactions in Uncultivated Marine Protists , 2011, Science.

[89]  C. Lemieux,et al.  The complete chloroplast DNA sequence of the green alga Nephroselmis olivacea: insights into the architecture of ancestral chloroplast genomes. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[90]  Dmitry Pushkarev,et al.  Single-molecule sequencing of an individual human genome , 2009, Nature Biotechnology.

[91]  W. Martin,et al.  ANNOTATED ENGLISH TRANSLATION OF MERESCHKOWSKY'S 1905 PAPER 'UBER NATUR UND URSPRUNG DER CHROMATOPHOREN IM PFLANZENREICHE' , 1999 .

[92]  E. Yang,et al.  Ancient gene paralogy may mislead inference of plastid phylogeny. , 2012, Molecular biology and evolution.

[93]  C. Gobler,et al.  Niche of harmful alga Aureococcus anophagefferens revealed through ecogenomics , 2011, Proceedings of the National Academy of Sciences.

[94]  D. Bhattacharya,et al.  Comparative Analysis of the Complete Plastid Genome Sequence of the Red Alga Gracilaria tenuistipitata var. liui Provides Insights into the Evolution of Rhodoplasts and Their Relationship to Other Plastids , 2004, Journal of Molecular Evolution.

[95]  S. Y. Kim,et al.  Complete mitochondrial genome of agar-producing red alga Gracilariopsis chorda (Gracilariales) , 2014, Mitochondrial DNA.

[96]  J. Palmer,et al.  An exceptional horizontal gene transfer in plastids: gene replacement by a distant bacterial paralog and evidence that haptophyte and cryptophyte plastids are sisters , 2006, BMC Biology.

[97]  D. Bhattacharya,et al.  Red and Green Algal Origin of Diatom Membrane Transporters: Insights into Environmental Adaptation and Cell Evolution , 2011, PloS one.

[98]  W. Martin,et al.  The hydrogen hypothesis for the first eukaryote , 1998, Nature.

[99]  Michael Melkonian,et al.  A plastid in the making: evidence for a second primary endosymbiosis. , 2005, Protist.

[100]  G. McFadden,et al.  Evidence that an amoeba acquired a chloroplast by retaining part of an engulfed eukaryotic alga. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[101]  T. Cavalier-smith Principles of Protein and Lipid Targeting in Secondary Symbiogenesis: Euglenoid, Dinoflagellate, and Sporozoan Plastid Origins and the Eukaryote Family Tree 1 , 2 , 1999, The Journal of eukaryotic microbiology.

[102]  Michael Reith,et al.  The highly reduced genome of an enslaved algal nucleus , 2001, Nature.

[103]  E. Yang,et al.  Complete mitochondrial genome of the agarophyte red alga Gelidium vagum (Gelidiales) , 2014, Mitochondrial DNA.

[104]  S. Bowman,et al.  Nucleomorph genome of Hemiselmis andersenii reveals complete intron loss and compaction as a driver of protein structure and function , 2007, Proceedings of the National Academy of Sciences.

[105]  Eunsoo Kim,et al.  EEF2 Analysis Challenges the Monophyly of Archaeplastida and Chromalveolata , 2008, PloS one.

[106]  Zu-Guo Yu,et al.  Origin and phylogeny of chloroplasts revealed by a simple correlation analysis of complete genomes. , 2003, Molecular biology and evolution.

[107]  A. Salamov,et al.  Green Evolution and Dynamic Adaptations Revealed by Genomes of the Marine Picoeukaryotes Micromonas , 2009, Science.

[108]  O. Anderson,et al.  A Description of Paulinella indentata N. Sp. (Filosea: Euglyphina) from Subtidal Coastal Benthic Sediments , 1996 .

[109]  E. Yang,et al.  Complete mitochondrial genome of a rhodolith, Sporolithon durum (Sporolithales, Rhodophyta) , 2015, Mitochondrial DNA.

[110]  Gernot Glöckner,et al.  Chromatophore Genome Sequence of Paulinella Sheds Light on Acquisition of Photosynthesis by Eukaryotes , 2008, Current Biology.

[111]  C. Lemieux,et al.  Chloroplast DNA sequence of the green alga Oedogonium cardiacum (Chlorophyceae): Unique genome architecture, derived characters shared with the Chaetophorales and novel genes acquired through horizontal transfer , 2008, BMC Genomics.

[112]  Fumiko Ohta,et al.  Genome sequence of the ultrasmall unicellular red alga Cyanidioschyzon merolae 10D , 2004, Nature.

[113]  J. Doyle,et al.  Trees within trees: genes and species, molecules and morphology. , 1997, Systematic biology.

[114]  C. Lemieux,et al.  The Exceptionally Large Chloroplast Genome of the Green Alga Floydiella terrestris Illuminates the Evolutionary History of the Chlorophyceae , 2010, Genome biology and evolution.

[115]  D. Vaulot,et al.  Picobiliphytes: A Marine Picoplanktonic Algal Group with Unknown Affinities to Other Eukaryotes , 2007, Science.

[116]  L. Katz,et al.  Broadly sampled multigene analyses yield a well-resolved eukaryotic tree of life. , 2010, Systematic biology.

[117]  G. Church,et al.  Sequencing genomes from single cells by polymerase cloning , 2006, Nature Biotechnology.

[118]  L. le Gall,et al.  A nuclear phylogeny of the Florideophyceae (Rhodophyta) inferred from combined EF2, small subunit and large subunit ribosomal DNA: establishing the new red algal subclass Corallinophycidae. , 2007, Molecular phylogenetics and evolution.

[119]  Oleg Simakov,et al.  Lawrence Berkeley National Laboratory Lawrence Berkeley National Laboratory Title Genomic analysis of organismal complexity in the multicellular green alga , 2010 .

[120]  Comparison of gene arrangements of chloroplasts between two centric diatoms, Skeletonema costatum and Odontella sinensis. , 1999, DNA sequence : the journal of DNA sequencing and mapping.

[121]  Aleš Horák,et al.  Molecular Phylogeny and Description of the Novel Katablepharid Roombia truncata gen. et sp. nov., and Establishment of the Hacrobia Taxon nov , 2009, PloS one.

[122]  David Moreira,et al.  Signal conflicts in the phylogeny of the primary photosynthetic eukaryotes. , 2009, Molecular biology and evolution.

[123]  T. Cavalier-smith,et al.  Chimeric conundra: are nucleomorphs and chromists monophyletic or polyphyletic? , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[124]  Nicholas H. Putnam,et al.  The Genome of the Diatom Thalassiosira Pseudonana: Ecology, Evolution, and Metabolism , 2004, Science.

[125]  Sara L. Zimmer,et al.  The Chlamydomonas Genome Reveals the Evolution of Key Animal and Plant Functions , 2007, Science.

[126]  Ramon Massana,et al.  Study of Genetic Diversity of Eukaryotic Picoplankton in Different Oceanic Regions by Small-Subunit rRNA Gene Cloning and Sequencing , 2001, Applied and Environmental Microbiology.